
RD-AIOS 093 NARY-BOOY TREATMENT OF FMYIER-STOKES FLUZDS(U) DAYTON 1/2
MNIY OH RESEARCH INST Rt J DECKER SEP 96 RFWL-TN-S?-SS

F29601-85-C-0037

I OLSSFE f f f f f f f .f fFf2/4 f



"III 1*0

Iiii A, d,



AFWL-TN-87-06 AFWL-TN-

87-06

M1 FILE 0GE.

0) MANY-BODY TREATMENT
00 OF NAVIER-STROKES FLUIDS

00 R.J. Becker e
University of Dayton Research Institute

1 300 College Park
Dayton, Ohio 45469-0001

September 1.987

Final Report

Approved for public release; distribution is unlimited.

DT "2"

OEC 1 5 1987 '

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtland Air Force Base, NM 87117-6008

87 12 . 162

V"



UNCLASSIFITED TI AE-
SECURITY CLASSIFICATION O HSPG

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Uncl assified______________________
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/iAVAILABiITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE is unli1mi ted.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBERS)

6&. NAME OF PERFORMING ORGANIZATION 6.OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONr
University of Dayton (N Wks") Ai
Research Institute Ai Force Weapons Laboratory

6L. ADDRESS (Of V StMt. SWd ZI CO*e) 7b. ADDRESS (City, Stat andl ZIP Code)

300 College Park
Dayton, Ohio 45469-0001 Kirtland Air Force Base NM 87117-6008

B&. NAME OF FUNDIN4G / SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION O f OP*@&@hd)

Ic. DDRES (ity.Stae. ad ZP Crde)F29601-85-C-0037
8c. DDRSS 09%Sftf, XI ZP C01010. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT .

ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE Onld Seuf ClsfkbNAIRTKSFUD
MANY-BODY TREATMENT OF NAIRSTOE FLID

12. PERSONA" AUTHOR(S) ,r1
Dr Roger J. Becker

13a. TYPE OF REPORT 113b. IME COVERED 114. DATE OF REPORT (Yeae, Montw. Day) S1. PA GE COUNT
Final FROM May 5 To en 86 1987, September I 148

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse if necessary and idmntify by block number)
E FIELD GROUP SUB-ROUP

20 04 ] Field -Theory.; .,Lagr.angian,. Green's Functions,
/Turbulence; Many-Body Theory, Navier-St4kes Equation._

19. ABSTRACT (Continue an reverse if neceuary aWndeE* by block number) MO

/A Langrangian has been developed that is equivalent to the full Navierb(St/4ies (NS)
equation for a three-dimensional, subsonic single-component fluid, including viscous
pressure gradients and advective terms. Dissipation is incorporated into the Lagrangian
by using hypercomplex fields for the velocity potentials. This Lagrangian has been used
to derive a field-theory description of fluid flow based on a diagonalized Hamiltonian and
the corressponding Poisson-bracket relations. Green's functions for the linearized system
and rules for drawing diagrams have been worked out. Perturbation expansions based on the
linearized Hamiltonian converge as the Mach number, rather than as the Reynolds number as
in earlier attempts to formulate Hamiltonians for the NS equation. This is achieved by
expressing the Hamiltonian in terms of the velocity potentials, rather than directly in
terms of the velocity fields. The interaction terms in the diagonalized Hamiltonian are
of the same form as that for the electron-phonon interaction in quantum field theory.

% 4

20. DISTRIBUTION/I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION >,i
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Cads) 22c. OFFICE SYMBOL

Jt M ark Ponti S) (s R44 _276o AR3 .II.00 FOR 1473.64=MA 83 APR edbton may be used until exhausted. SECURITY CLASSIFICATION OF 7ISPAG
All other editions art obsolete. UCASFE

UNLASIIE

v %1



UNCLASSI FIED

SECURITY CLAWIPCAIO OFare THI PACEP~



TABLE OF CONTENTS

SECTION PAGE

TABLE OF CONTENTS iii

LIST OF ILLUSTRATIONS v

PREFACE

OVERVIEW 3
BENEFITS 6

PART I BASIC FORMULATION

1 I INTRODUCTION 11

2 NAVIER-STOKES LAGRANGIAN 14 ".

2.1 EQUATION OF MOTION 16
2.2 HAMILTONIAN 18
2.3 NONLINEAR TERMS 20
2.4 POISSON BRACKET RELATIONS 22

3 CONSERVED CURRENTS 25

4 DIAGONALIZATION 29

4.1 SCALAR POTENTIAL 31
4.2 VECTOR POTENTIAL 354.3 CONSERVED CURRENTS 40

5 GREEN'S FUNCTIONS 41

5.1 DERIVATIONS 42
5.2 DENSITY OF STATES 46

6 DISCUSSION 49

REFERENCES 50

PART II EFFECTS OF NONLINEAR TERMS

1 INTRODUCTION 53 ror

2 MODE COUPLING 53

2.1 CANONICAL TRANSFORMATIONS 57
2.2 EMERY TRANSFORMATIONS 61 -

3 COLLECTIVE EXCITATIONS 64

REFERENCES 72

S .- ,,-'..' ."' : -



TABLE OF CONTENTS
(Continued)

SECTION PAGE

PART III FURTHER TOPICS

1 RULES FOR DIAGRAMS 74

2 SAMPLE DIAGRAM CALCULATIONS 78

3 HEAT EQUATIONS 87

3.1 THERMAL LAGRANG IAN 88
3.2 GENERAL TREATMENT OF PASSIVE SCALARS 91

4 APPLICATION OF THE RENORALIZATION GROUP 94

-4.1 EQUATION OF NOTION 95
4.2 FLUCTUATION INTEGRALS 98

REFERENCES 103

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

SUMMARY 105
CONCLUSIONS AND SUGGESTED RESEARCH 107 -

ACKNOWLEDGMENTS 109

APPENDICES

APPENDIX A 111

APPENDIX B 113

APPENDIX C 120

APPENDIX 0 125

APPENDIX E 127

APPENDIX F 134

APPENDIX G 137

iv



LIST OF ILLUSTRATIONS

FIGURE NO. PAGE

1 Block Diagram of the Relationship Between
Various Aspects of Field Theory. 4

2 Basic Diagrm Building Blocks. 77

3 Two-Vertex Bubble DIagras. 80

4 Oyster Diagrams. 81

5 Four-Vertex Bubble Diagrams. 82

6 Examples of Four-Vertex Diagrams. 83

7 Susceptance (Unlinked) DIagrams. 85

.5.

a.

.5.

, ' . -;9.:.,, .;.%-.. ..:. . < < . .: : - . I .?.:;:. .. ;:.,?. . .: ... ;.-..- - /..-;.-:,<. :. .- .. ,



UNIVERSITY OF DAYTON
RESEARCH INSTITUTE

DAYTON, OHIO 45469-0001

PREFACE

This report describes the development of a new approach to modeling

turbulent flow. Heat transfer in a fluid is also addressed. This effort is in

response to an initiative from Kirtland Air Force Base calling for novel methods

of modeling incompressible turbulent flow in convectively cooled systems. The

approach taken has been to derive a Hamiltonian which. preserves all of the

physics contained in the Navier-Stokes equation, and to diagonalize this

Hamiltonian (i.e., transform the variables to variables which are preserved with

respect to the Hamiltonian). This Hamiltonian can be used as the starting point

for a number of different calculations. For example, it can be used to obtain a

partition function that will be used to describe the statistical properties of a

turbulent system. Indeed, this is an approach favored by the author. The

Hamiltonian can also be used as the basis of the newer class of calculations

referred to as "Renormalization Group" and "Chaos" descriptions. Hence, it may

be used in models which are sometimes referred to as "deterministic" as well as

those which are known as "probabilistic." This is natural, since the

Hamiltonian itself does contain the same physics as the Navier-Stokes equation.

Rationale 

The rationale for the adopted approach is that it has worked well in other

areas of physics which share with turbulence the properties of nonlinearity and

a large number of degrees of freedom. These are the key features of what are
* A

known as meny-body systems. Examples of systems in which the field theory or

many-body approach has proved extremely useful are nuclear physics, high-energy

physics, quantum-electrodynmics, and condensed matter physics. In all of these

[1]



fields, the Hamiltonian is separated into the sum of a linear, basis part, and a

nonlinear, "perturbing" part. Solutions for the full, exact system are

expressed in terms of integrals involving solutions to the linearized system.

Usually this involves some form of perturbation theory, which immediately raises

the question of how rapidly a perturbation series will converge, or even whether

it will converge at all. This is especially true of turbulent flow, in which

closure of equations involving moment expansions of the velocity components is a

common problem. In the above areas, the representation of the complicated

integrals which arise in perturbation series by simple diagrams has been a great

aid in summing perturbation series, sometimes to infinite order. This has

worked even in cases in which the series converges very slowly, or even

diverges. The Hamiltonian described in this report has perturbations which go

as the Mach number, and so perturbation expansions are expected to converge well

for subsonic flow.

The usefulness of diagrams to represent complicated integrals goes beyond

its great simplification of a bookkeeping function. The diagrams have a

psychological appeal that aids the physical intuition of the theoretician in his

formulation of a particular calculation involving interactions between various

degrees of freedom of the system (e.g., fluid elements, or normal modes of the

linearized system). In the above fields, the various degrees of freedom of the

system are throught of as particles, and interactions are described in terms of

scattering events between particles. For example, an oscillation of a sound

field at a particular frequency my be regarded as a phonon. This viewpoint

gives a deeper meaning to the term many-body system. We see then that a

many-body description of a problem is helpful in performing diagram calculations

of perturbation expansions and highlights parallels with other systems which have

[2]



been extensively analyzed. Furthermore, it provides a means of making a generic

analysis, since calculations are made in terms of the normal modes of the

linearized system, without actually specifying explicitly what those modes are.

The boundary conditions and explicit solutions are included at the end of a

generic calculation. This-feature may facilitate comparisons of the behavior of

system with different geometries and flow conditions.

Overview

The various aspects of treatment of a system based on field theory are

shown in block form in Figure 1. Most calculations begin with the full

Hamiltonian, H, as a starting point. The Hamiltonian is expressed in terms of

fields which are the solutions to the partial differential equation of interest,

in this case the Wavier-Stokes and heat budget equations; hence the nae field

theory. Note that at the outset field theory gives a generic description. The

fields are the wavefunctions, or solutions to the partial differential equation;

calculations are done in term of these wavefunctions without explicitly solving

for them. Many calculations can be done in terms of a Poisson bracket (P.5.)

formulation. Poisson bracket calculations have the advantage of being

independent of a particular coordinate system, and are very powerful. The above

mentioned many-body systems are all quantum systems, and the analogous

equations to P.8. relations in those systems are commutator relations.

It is emphasized that the formulation described in this report is entirely I

classical. At no point is a quantum description used. Although the formulation

closely parallels field theory descriptions of quantum systems, such as the use

of Poisson brackets instead of commutators, the integrity of a fully classical

description is preserved throughout, and leads to significant variances from th~e

form of quantum calculations.

[3]
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Often the initial wavefunctions and related fields known as conjugate

momenta (denoted by * and x in Figure 1) are transformed to new field variables

which are said to diagnonalize the Hamiltonian. In quantum systems these new

variables become creation and annihilation operators. In the present

formulation, they are simply Fourier coefficients, and are represented by q and

C in Figure 1. Poisson bracket calculations can be made in terms of the

diagonalized fields as well as the initial fields. In many cases calculations

are easier to perform in terms of the new diagonalized field variables.

Using the Poisson bracket relations, an equation of motion for any field

variable can be derived from the Hamiltonian. Many calculations are based on

these Hamiltonian equations of motion, which are fully equivalent to the origin

partial differential-equation (e.g., Navier-Stokes equation) to be solved. An

alternative, an extremely powerful procedure, is to find the Green's function, G,

corresponding to H. If the initial partial differential equation is thought of

as an operator, 0, operating on the field variables, 0, then G plays the role of

the inverse operator to 0. The Green's function 6 to the full Hamiltonian, H,

can be derived from a perturbation expansion about the Green's function G0 to

the linearized problem. G0 is easily derived from the linearized Hamiltonian,

Ho, so that a procedure for solving a complex problem can be built up

systematically beginning with the solution to a simpler problem. Green's

functions are central quantities in field theory. From them the densities of

states, densities of excitations, transition probabilities, lifetimes of

excitations, dispersion relations, total energy, equation of state, and

partition function can be derived.

N" N



j
Benefits

One of the hallmarks of the field theory approach is that the development of

the entire theory is completely systematic, once the true starting point, the

development of a functional L known as the Lagrangian (from which H can easily

be derived) has been attained. Thus theoreticians skilled in field theory will

know immediately how to perform relevant calculations similar to those done in

quantum systems, given the appropriate forms for L and H. Novices need not

learn quantum field theory to perform calculations. They can begin at once with

the rules for drawing and summing diagrams. Indeed, there is a modern trend

toward teaching quantum field theory beginning with diagrams, without any

reference to a Lagrangian, or a deep discussion of the theory. Hence many-body

calculations can be made accessible to a wide community. This is in keeping

with the goal of the research described in this report: to facilitate accurate

calculations of the properties of real turbulent flow fields in practical

systems.

tI
Notwithstanding the main goal of a practical calculational tool, it is worth

noting that the Lagrangian can be analyzed to obtain a deeper insight into both

the properties of a many-body system and the character of the theory. Given the

Lagrangian, the stress-energy tensor, W (the stress-energy tensor is usually

denoted by T in quantum field theory), can be derived; and the symmetry

properties of L and W can be analyzed to obtain all the conservation laws for

the system. Examples in fluid mechanics are the conservation of mass, energy,

and momentum. Note that these conservation laws are not postulated in addition

to the Navier-Stokes equation, but can be systematically derived directly from

L, i.e., a collection of initial postulates is not needed to describe the

[6]



system, only the initial Lagrangian and a systematic procedure for developing

the theory. This feature gives the theory a strong foundation.

Equations of motion for the fields can be derived from the Lagrangian by

postulating that the variation in the functional L will be a minimum, and that

the fields are fixed at the boundaries. Then integration by parts and the

calculus of variations lead to Euler-Lagrange equations of motion (see Appendix

A). Hence the true starting point for the development of a field theory should

be the correct formulation of the Lagrangian. This task has been accomplished

in the program and is the most important result of the effort.

The value of deriving a Lagrangian for fluid motion has long been

recognized, and there have been several previous attempts at this task. Those

efforts were largely unsuccessful, primarily because of the difficulty involved

in accounting for dissipation, but also because of the way in which the pressure

gradient term was treated. The present theory, which we now summarize, departs

from earlier efforts in both respects.

Summary

The technical description is divided into three parts, which follow. In

Part I, the Lagrangian is presented and an analysis is made of the quadratic

terms, which correspond to the linear (noninteracting) system. The Lagrangian

is expressed in terms of the scalar and solenoidal velocity potentials, T and

4 , rather than directly in terms of the velocity. This approach highlights the

natural symmetries of the system and brings in the pressure gradient term

without introducing an extra field. Velocity is accounted for by introducing

adjoint fields for the velocity potential. These adjoint fields would grow

rather the damp with time if they were complex conjugates of the initial

,7
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fields. To avoid this difficulty, the adjoint fields way be considered to be

hypercomplex.

It should be noted that the innovation of using hypercomplex adjoint fields

to describe terms of odd order in the time and/or spatial derivatives of an

equation of motion is applicable to the solution of a wide class of partial

differential equations, including equations for passive scalars and many other

dissipative system.

Equations of notion for the velocity potential are derived using Euler-

Lagrange equations, and found to correspond to established results for the

linearized problem. The continuum mechanics formalism is extended to derive the

Hamiltonian and Poisson bracket relations, as well as the stress-energy tensor.

At each step equations of motion are generated anew and compared to the initial

equations to check for internal consistency. The Hamiltonian is then Fourier

transformed and diagonalized. Finally, Green's functions for the system are

derived.

Part II explores some of the consequences of including the nonlinear terms

(which correspond to the advective term and higher-order parts of the pressure

gradient term in the Navier-Stokes equation). One advantage of the development

is that the perturbation terms scale as the Mach number, rather than as the

Reynolds number, as is the case in earlier works. However, since the advective

term is of second order in the velocity, the corresponding terms in the

Lagrangian are of third order in the fields. This immediately causes a break-

down of phase invariance, a problem which does not arise in quantum field

theory. This may mean that the Lagrangian must be transformed to new variables. '

-.%



The discussion in Part II is based on terms of the Fourier-transformed

fields. These fields are further transformed to make contact with various

calculations made on such critical phenomena as superfluidity and

superconductivity. Modified equations of motion are also derived for the

original Fourier-transformed variables, and comparisons are made with the

equations for various critical systems.

In Part III procedures for making diagram calculations are indicated and a

simple Illustration of a diagram calculation is given. An extensive

renormalization calculation of the effective viscosity, due to John Erdei, is

also presented. Next a procedure for deriving Lagrangians corresponding to

equations'of notion for passive scalars is discussed, with an extensive example

of the heat budget equation. Justifications for several lengthy procedural

steps are given in the Appendices.

Parts 1, 11, and III are each written as self-contained works, complete with

their own references for convenience.

1..
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MANY-BODY TREATMENT OF NAVIER-STOKES FLUIDS

PART 1, BASIC FORMULATION
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1. INTRODUCTION

Flowfields of practical importance are usually hard-driven, nonlinear

systems of great complexity that are far from their final relaxed state which

we term equilibrium. Traditional approaches to describing such systems yield

diminished results and are not amenable to application to a variety of systems

possessing diverse boundary conditions. By contrast, Many-Body Theory is a

description of a complex system which has proved quite useful in a variety of

areas that include strongly fluctuating quantities.

Experimental aspects of turbulent flow, such as the slow decay of

1
large-scale structures under appropriate operating conditions, the bifurcation

and quasiperiodic behavior of characteristic modes preceding turbulent
behavior, and the onset of turbulence at critical Reynolds numbers, are

reminiscent of critical phenomena. A comparison between turbulence and critical

system would be greatly augmented by the use of a Many-Body formalism. It

would be especially useful for semiquantitative calculations of scaling

behavior.

A Lagrangian/Hamiltonian formalism has been developed for a single-

component, viscous, subsonic flow in three dimensions. These functions will

describe the full Navier-Stokes equation without approximation. Results include

the eigenfunctions of the linearized system implicitly. Only the fundamental

bracket relations are required. Poisson bracket equations are independent of

coordinate systems.4 Results can be applied to various boundary conditions by

explicitly inserting the particular eigenfunctions for those conditions. V

,1%
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Since the Hamiltonian and the Poisson brackets can be shown to be

canonically invariant, the initial basis functions may readily be transformed

to other variables more suitable to calculation. Finally, an approach based on -

Many-Body techniques may make contact with the vast literature on field theory.

In this way, many useful results my be obtained by a relatively small effort.

Much of the early work on field theoretical calculations concerning fluid

mechanics was prior to a maturation in field theory and is expressed in a

sophisticated format which cannot readily be disseminated to a broad community.

Attempts at applying diagrammatic techniques borrowed from quantum field theory
V

to turbulence in incompressible flow have been made by yld , Lee.6 Edwards,

Kawasaki, 8 19 Martin, et al.10 and Gledzer and Monin.
1 1 Except for Kawasaki, who

used the Lagrangian equation as a model, all of these authors'simply made

perturbation expansions directly from the Navier-Stokes equations, including the

entire pressure gradient term with the advective term. No systematic

development from Poisson brackets was considered; rather intuition was used to

renormalize perturbation series that began with the Reynolds number as an

expansion parameter. It is not surprising that these expansions tended to

become intractable after the inclusion of the fourth-order term. While

demonstrating that the application of field theory to fluid mechanics is a

plausible calculation, and providing useful bases for comparison, this work did

not follow a systematic development based on a canonical formulation of the

governing partial differential (Navier-Stokes) equation, as is standard in field

theory.

A Lagrangian density corresponding to the Navier-Stokes equation12'1 3 has

been described in earlier work. However, this Lagrangian (expressed in terms of

the velocity itself, rather than its potential) is developed from a Lagrangian

[12]
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corresponding to sound waves in a Lagrangian coordinate system, augmented by

continuity equations as constraints. Viscous damping is brought in by "posits"

rather than derived directly from a term in the Lagrangian.

There are many ways of constructing the Lagranglan density upon which the

Poisson bracket relations are based. Several different Lagranglans for Eulerian

flow have been described by various authors.14 Most of these are expressed

directly in terms of the velocity and pressure. The resulting formalisms are

awkward. Moreover, they avoid the truculent dissipative term. The Lagrangian

density described below is equivalent to the full Navier-Stokes equation for

subsonic flow and is expressed in terms of the scalar potential function and

the solenoidal stream function. This is a more natural approach, as it

implicitly couples the velocity and pressure and nicely separates potential flow

from rotational flow. In addition, the symmetries and transformation properties

of the system are more apparent using this formalism.

We begin our formalism with a fluid density p, a scalar potential Y, and a

solenoidal potential,4. Since the dissipative term in the Navier-Stokes

equation is of even order in the space and time derivatives, while the other

terms are of odd order, it is necessary to invoke adjoint fields. This is done

by expressing the Lagrangian density in terms of products of new velocity poten-

tials and their adjoint fields, and then expressing T and 4 as the sum of these

fields. This procedure requires that the "scalar" velocity potentials and their

adjoint fields become pseudo-scalars in four spaces and that the "vector"

potentials and their adjoint fields become axial vectors. It would be note-

tionally simpler to work with the complex conjugates of the potential fields

rather than with the true adjoint fields. This procedure would require that we

E13]
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express odd-order derivatives of T and 4 in terms of the differences of the

corresponding derivatives of the ne" potential fields andI their adjoint fields,

rather than their sums.

Expressions for new variables are obtained on the basis of the symmetry

properties of the Lagrangian. The Poisson bracket relations for the symmetry-

generating variables are also examined. It is not necessary to use a matrix

formalism to obtain the diagonalizatlon. As a corollary, expressions for the

conserved currents of the system are obtained, and the key continuity equations

are again generated. This work solidifies the basis for the formalism.

2. NAVIER-STOKES LAGRANGIAN

We wish to solve the Navier-Stokes equation for an isothermal, single-

component fluid with constant kinematic viscosity, v:

+ v.V + vxxv -DV + P= F/p r/p , (2.1)

where P is the pressure, p is the fluid density, and

D C/ps-v . (2.2)

To do so, we construct the appropriate Lagrangian, L, in terms of fields for the

velocity potential. L is an integral over a Lagrangian densityA:

L - fdtdaro  (2.3)

We express v in terms of a scalar potential field Y and a solenoid potential

field 4: . ,

v YY + Vx'4, (2.4)

(14]
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with

4 a A + A (2.5)
and

T -a + (2.6)

where - denotes the hypercomplex adjoint. We make the approximation

P _ pY _ p lwl2 _Y i 2 2 + p. (2.7)
C

where P is a constant. Higher-order approximations for P may be obtained by

adding correction terms to Equation (2.7). Denoting the speed of sound by c,

the required Lagrangian density is given by

A.(, * , A) u.0, * .0A +,#+NL + - P (2.8)

where

2>u-o -1D (*Yy2  cVY*jo* (2.9)

2 2 *

p -A A.A (+ o)(Av0 .xVxA - Yxi) .( 1210

c2

9 -_P -(vo + #y )(VxA - VxA).(Y* - V#)

S(- + )(VxA - VxA).(VxA VxA), (2.11)

c L o Y; +-1$7, - VW) (2.12)

and -

22

2 _ 2 (2.13)
c

11.9
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In Equation (2.9), we let

F - - VU (2.14)

and

L 1-/p ( (2.15)

Similarly, we let

B!a (x;)/p (2.16)

describes the potential velocity field, describes the solenoidal
* A

velocity field, and .8 describes the interaction between these two fields due to
I

the advective term in the Navier-Stokes equation. The nonlinearity in the N

Navier-Stokes equation is contained in .8 and .9NL 8 and in correction terms to

Equation (2.7).

2.1 Equations of Motion

The Euler-Lagrange equations of motion for q. *, A, and A are obtained by

minimizing L with respect to these fields through the calculus of variations,

using integration by parts (see Appendix A). These equations may then be used

in conjunction with Equations (2.4) through (2.6) to obtain an equation of

motion for v. Since the potential field equations will be of second order in

time, the resulting equation must be integrated with respect to time to regain

Equation (2.1). Calculations based on -8will be made by treating .8' ANL and

the nonlinear terms in the series approximation for P as perturbations about the

linear term in and In general the expansion parameters should go roughly

as J(v/c), so the series should converge rapidly for subsonic flow. As the

development of the formalism proceeds, the formalism will take on a structure

that closely parallels that of quantum field theory. Nevertheless, the system

(16]
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remains completely classical, as explained in Appendix B. We begin by

investigating the linear Lagrangian density AP0, where

2 + .2 A (2.17)

Variation of in 0 gives

- oV - 2 . (2.18)

A corresponding variation of 9 in 4 gives

+ DV .c (2.19)

Variation of A nA 0 yields

A + vyiVxfA - B (2.20)

while variation of A in A0 results in

A- vxV xAy (2.21)

These results are in agreement with those of other authors.( 15 ,1 6 ) The momenta

conjugate to 9, 9, A, and A are respectively:

*aa - (- + V v ). (2.22)

2c"
2c 2 (2.23)

p aAe0 /aA 2c 2(A --vxVxAy.) (2.24)

[17]
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and

8 aA 0 /aA a(A+ v vxvxA). (2.25)
2c -

"

2.2 Hamiltonlan

The Hamiltonian density corresponding to i, . is given by

4. u+ntt -? (2.26)

2cc
o L(-;  D. V 2 )(-. c2o ) +  V +V V.S

Similarily, the Hamiltonian density of corresponding tosA is

given by

.# a= p'A + P°A -2A (2.28)

,(A

pxx .o -'- -~ I.oX.X.) -'A -,.

2c2L 2(-o p 2 -2 A) . (2.)

The Hamiltonian equations of motion for *, t, it, and ir are

2c2

*g~ 2c- 1
i* s dH/Bn = -~ i vy 1Vx~ (2.30)

2c 2  2 81

TheHamltoia eqatinsof otin or , w i an(18]r



pc2 2-
g-6H20V *YpV o, (2.32)

and
'

i.-./0 ( D V2 , + C2v2, 1 , (2.33) ,

2c

For the vector potential fields we find

2c
H/p 2c- - - 'VxVxA (2.34)

P 0

p. - H/A 0 - vj ~'xVxA-y +8 (2.35)
N

t
.

4U2  0,

- 2c 2  1 -
A2 2/P * -p + ivVxxAyo , (2.36)

and

p 2 Iv 0HB *- vVxVxA -B 1 (2.37)
4c-

Differentiating Equation (2.30) with respect to time and then using Equation

(2.33) yields Equation (2.18), as it should. Similarly, differentiating

Equation (2.32) with respect to time and then using Equation (2.31) gives

Equation (2.19). We now assert that (see Appendix C)

V V k , (2.38)

k k

WY (2.39)
0 0

f Ay (2.40)

[191,,,
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and

Vx4= YkVXA - VxAtk. (2.41)

Then, adding Equations (2.18) and (2.19), we obtain

Y-ov2 -c 2vy- . (2.42)

Adding Equation (2.20) and (2.21), we find

" + ixvxo'= B (2.43)

2.3 Nonlinear Terms

Assuming the gauge equation

V-A = 0 , (2.44)

the addition of the second expression in _P to AP does not affect Equations1 0

(2.20) and (2.21), but adds the term

1o L (xA - vxA)•(VxA - VxA)]

to both Equation (2.18) and Equation (2.19). The corresponding change in

Equation (2.40) is

(x 4.Vx)

The addition of L to L adds the terms
NL

-(1o# + rY) (V2* V2 j)

on the left-hand side of Equation (2.18) and

2-
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on the left-hand side of Equation (2.19). The corresponding change in Equation

(2.42) is

(V- V f).(ov -V o)

- 2alVY.wY)/at

We may integrate Equations (2.42) and (2.43) with respect to time, and use

Equations (2.4), (2.15), and (2.16) to obtain the linearized counterpart to

Equation (2.1).

The addition of the first expression in "8 to 2o does not affect. Equations

(2.20) and (2.21), but adds the terms

[ (V#I - * (VA- Vx,...+ 4 *4 + V*Y)*(VxA VAoat 0 'o

to the left side of Equation (2.18) and the terms

! [(V* - Vj).(VxA - VxA) (YO4 + V*Y0).(VxA - VxA)

to the left side of Equation (2.19). The corresponding additions to Equation

(2.42) are terms of the form

2IY .(VxMq + 127r - Vx l

provided again that Equations (2.36) and (2.37) hold. As a check, we differ-

entiate Equation (2.1) with respect to time, and substitute in for v using the

Equation (2.4). We make use of the linear approximation for the pressure

gradient term,

ICP + V.v a 0, (2.45)

(21]% O I
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to obtain the relations

Vx- + vxY?] -8e. 0 (2.46)

and

Y[ni- - 1o2v + + a *Y + a -Vx oq. e] "0. 2.47

2.4 Poisson Bracket Relations

We will define Poisson brackets in terms of a variational derivative:

ax ayv ax ay (.e :
rx.Y], -X , - .. (2.48)

where the fields *. are given by , * A, and A and the II fields are their

conjugate momenta x, f, p, and p.

We have the usual relations

[*1 (r), *j(r')] - (111(r), I (r')] -0. (2.49)

For the conjugate fields we write

(r), It(r')] = C 6ij 6(r-r'). (2.50)

For the scalar fields we have C x 1, but for the vector fields we have C - 3s, as

we shall show in Section 3.

Keeping in mind that our Poisson brackets are defined in terms of varia-

tional derivatives, the equations of motion expressed in terms of Poisson

brackets are in standard form:1
7

aF/a t  CF, li] ( (2.51)

-aF/aI. - (F, #)] , (2.52)

[22]
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and

[F, H] + ( (2.53)
-at

for any variable F. We can check our formalism for consistency by using the

relation (2.53) to retrieve our Equations of motion. With HA given by:

HA a.-. + VxVx o  • - '?o VxVxA (2.54)
2c2 0

we find

A = [A, HA]

2CA, p] -f YxxA) (2.55)

2c 2
p- p - ivyoVxVxA • (2.56)

Similarly, recalling that our brackets are defined in terms of variational

derivatives,

p [p,H A ]

... l -u~ A, 1 [VxVxA, p]A'

2C 2  1"

VYx(c2 + 1vxvXA' (2.57)
2 p- + -i--p Vx iy [xxp2c 2 0

- --- V VxVx . (2.58)4c 2  o p

[23.[23] A.
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With H # given by

2c2..L. j(c2
- OV 2  (2c + jo10 2  ) + C2V Vf (2.59)

we have

;:~i ( 2 ~ir *~** 0/(2.60)

2c 2  1 2
I

= + :PO0V •(2.61)

Similarly,

A= (wH,]

(2c2 w 1 2ir

-v -flV- dr DrV + Cv i 2.62
2c 2 '.. 2~o 0) V~

1 I'- V2  + C2V2i (2.63)
2c2  o 

,

in the absence of external forces. In the same manner we can reproduce the

equations of motion for

A, p, *, and it.

[24]



3. CONSERVED CURRENTS

The prediction of conserved currents on the basis of the symmetry of the

Lagrangian density I is discussed in detail by Roman and by Mandel and Shaw.19

Although their discussion is directed towards the quantum systems of particle

physics, all the arguments can be applied to a classical system. Nothier's

theorem states that the invariance of the Lagrangian density with respect to a

symmetry transformation implies the existence of a conserved variable. Consider

a four-vector, f , such that

a *f 0. (3.1)

Integrating Equation (3.1) over coordinate space, and making the identification

F a fd3 rf , (3.2)

yields

3
3

,, d - d3rlaf./ax. (3.3)

.- fdAf - 0 . (3.4)

Consequently, if the variation of . with respect to some symmetry trans-

formation yields an equation of the form of Equation (3.1) for some four vector

f we are led to a conserved variable F. As shown in Mandel and Shaw,9 guge

invariance, expressed by

aie

(3.5)

leads to the conservation of the quantity

Jd3rfn -f ] = m/p . (3.6)

[25] 1
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The continuity equation for m is

m+V.j= 0 (3.7)

with
b

3u - -• (3.8)

Invariance with respect to the four-translation .

X -x + ax mX
11 jt~

Clx ) - '(x') (3:9)
',p

A(x ) WA'x)

leads to the conservation of the stress-energy tensors T* and TA

(see Appendix 0).

The general form of the elements of T* is given by:

7* + 21

+, ,z[ ]- . (3.10)Pa8 o  P i.t I~~O .

This definition of W# is a necessary extension of the stress tensors described
by Morse and Feshback16 and by Morse and Ingard1 5 if dissipation is to be

included in L. A similar definition will hold for WA. Explicit forms for the

elements of the stress tensor are

(3.11)
1 2c

[26]



T + -P (3.13)
rl 2c 2c-

1 etc. (3.14)

and

2 +-D etc.] .15
xx 2c' 2" 0 O*x 4, ** - , 4,~y )* , (.15

The components of T#satisfy the continuity relations

+ V.1 - 0 (3.16)

and P + V.W = 0 , (3.17)

where W is a 3x3 tensor containing the spatial parts of T#, known as the wave-

stress tensor.

We see that the continuity equation for the stress-energy tensor follows

directly from the form of our Lagrangian density, i.e., we can derive it from

our Lagrangian; it does not represent a subsidiary condition on our formalism.

Although .o is invariant with respect to gauge transformations, the
0

nonlinear terms in our full Lagrangian density break gauge symmetry. Neither

the A nor the # fields can be made to satisfy local gauge invariance in any

simple or reasonable manner. However, the full Lagrangian density is preserved

with respect to four-translations.

The symmetries of the Lagrangian/Heamiltonian density are important not only

for generating additional equations of motion, but because they provide valuable

clues and, in fact, a systematic procedure for examining the behavior of the

system when it undergoes a change of state, e.g., from laminar to turbulent

flow.

[271
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Since the conserved variables may be derived from the symmetry properties of the

Lagrangian, their Poizison bracket relations with other variables offer clues to

the behavior of the system with respect to various symmetries. In particular,

if F is a conserved variable, and if there exist (possibly the same) variables

such that
[F(O), X] = Y (3.18)

with

<Y> * 0,Y > c (3.19)

for some parameter 8 and a critical value of that parameter, Oct then Equations

(3.18) and (3.19) signal a breaking of symmetry, usually associated with a change

in state, at *c . We seek such relations in an attempt to develop a theory of

coherent structures at the onset of turbulence. Consequently, it is of interest

to examine various Poisson bracket relations pertaining to conserved variables.

We have:

rPJ u-p* , (3.20)

[m,J a1 pi (3.21)

[m,] p s (3.22)

m, I] - -Pr . (3.23)

Equations (3.1) and (3.10) to (3.13) lead to the conservation of P in the form
18 '19

P -d 3r[xY + iY] + (3.24)

The function P has the property that:

[F, P] a F . (3.25)

From Equations (3.18) and (3.7) we see that if:

<V> a <# - > , (3.26)

then translation symmetry, generated by P, will be broken.

[28]
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4. DIAGONALIZATION

We will now make linear transformations of the scalar potentials which will

diagonalize H in the absence of external driving forces. It will be helpful in

performing the required algebra to define a frequency wk' given by

2 22 1_2. 4 <c2k + .0 k (4.1)

61 k 4 1

for a mode with wavenumber k. We will ignore external driving forces in the

following discussion.

We first expand # and j in terms of the normal modes of system. We

express the normal modes as functions of their wavevectors k through the

argument iker. We will assume a stationary system, and express *k(t) in terms

of the phases

e , (4.2)

e+ CWkt."
a k a e (4.4)-

and

-iW~k t
0- M (4.5)

The scalar fields are expanded as

k a ( ekok + rkaIkuk) (4.6)

S( k + ) a.k(4.7)k k( kk + 'k, ,~

[291
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where we use the notation

U*1

,.;

0 k - UkA

The constant factor c/6- is inserted into the definitions given by

Equations (4.6) and (4.7) to produce expressions for quantities of interest in

terms of the Fourier transformed fields that are compact and that highlight the
18-23 .

analogy with work in other areas using second quantization. The system is

"quantized" only to the extent that we are using expansions in Equations (4.6)

and (4.7) in series rather than continuous transforms. Our fields are classical

fields, and we have not as yet introduced eigenvectors or operators.

Two species of functions, nk and Ck in the transformations given by

Equations (4.5) and (4.7) are needed because the equation of motion for

contains terms that are of zero, first, and second order in time, as well as

ter is that are of third order in the field strength. The presence of terms of

odd order in either the time or space derivatives or in the field strength NO

dictates the use of complex fields. If the equation of motion is genuinely of

second order with respect to time and the Lagrangian is expressed in terms of
20.

complex fields, then two species are required for diagonalization.20  This

occurs for example, in the description of a charged meson field. 18 20 ,24  If the

equation of motion Is of second order and only a real field is required in the

Lagrangian, then only one species of function is required for diagonalization.

Examples are phonon fields and the neutral x meson fields. 19'24 26  A second- U-

order equation is equivalent to two first-order equations, so complex fields

with first-order equations of motion can be expressed in terms of a real field

(30]
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obeying a second-order equation of motion.2 0  This occurs, for example, with
16

the Schrodinger equation20'23 and the diffusion equation. The equation

of motion for the A fields is similar in form to the latter two cases, and we

will need only one species of function to diagonalize HA, as we shall show

below.

We emphasize that Equations (4.6) to (4.8) show how the development may be

applied to any geometry. In the remainder of the discussion we will concentrate

on the functions #k(t) and j. (t) and their derivatives. This discussion will

be completely general. To apply the results to a given geometry, we need only

substitute the appropriate functions uk(ik.r) and Ok(-ik.r). In the discussion,

whenever we refer to these functions explicitly, we will use the plane wave

ik-r -iker -- ik-r
solutions uke and uklAe - uke

4.1 Scalar Potential

Since

- 0 ~V - c V2 0 (4.9)

and

+, oV *Y ° - cVs = o (4.10)

we have
2 Doqk2 c2k 2
*k +  - - 0 (4.11)

and

* 2 - .w 0 (4.12)
k o Ck

Equations (4.11) and (4.12) imply that

wq =  -iOyk 2  (4.13)
r[k Ck 0

[31]



and

2 2
"k+ %iDy ok 0 wk = wk - jiDy0k . (4.14)

Note that

W k W Ck a c2 k2  (4.15)

so that substituting Equations (4.6) and (4.7) into the relation

i = -.- r* +c2v.y] (4.16)

2c
2

yields H*-, 2, ) -,,I 2o k, , 2 .C /* c ,-,(.17
- 1 Il k + c k r k + ( 2 k + Ck k ]

k ck

assuming that

I d r uk(r) k' (r) 0 ak,k' (4.18)

i.e., that the uk are orthonormal.

We now rewrite Equation (4.11) in the form

k2 c2 2  ilo2)k
+ c 2'W ik )W (4.19)
W k (w'rk o uk

or

2 2 2
k+ c 2krlk  (4.20)

Similarly, we may rewrite Equation (4.12) as

( k2 2 .l O o 2 ))
W 2 - ji070 k 2 Q (4.21)

or

2 +C 2  =2 kk (4.22)
Ck

[32]



Substituting Equations (4.20) and (4.22) into Equation (4.17), we obtain

at last

H4V ('kqk + ((k (4.23)

in standard form, 18,22,27 albeit with complex eigenfrequences. it will often

be convenient to use the compact notation

*(r,t) *kt) Ukikr) , (4.24)

k k

((r,t) [ Uk(-ik.r) (4.25)
k ,k

k

where

C +#k "(---k1  1 ¢ O 8k + nkenk) (4.26). .

and

" c E(..8 ?6) . (4.27)7#k k +

The fields i and x may also be expanded in a manner similar to * and *:

= ff k (t)k(-ik-r) (4.28)

k

and

IF= N k(t)uk(ik-r) • (4.29)
k

From the relations

R (*+ %V% (4.30)
2c2  

0

and

c - - 0 -(4.31)
2c2  3

(33]
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and Equations (4.6) and (4.7) we find .

44

nk(t) = 2c(P/wk (iqk - 3 Dok + + Dvok2)Cek (4.32)

and !

W•~ 2 TI [i + WYo2)rk2 k -+k (433

Nk(t) =;(P/w)4 [(-1%k +  O k + (iCk + ok2) k" (4.33)

Now from Equation (4.14) note that

22
i('ilk - 4Dok = ilk =k ik + 30yo k  (4.34)

consequently Equations (4.31) and. (4.32) may be simplified to

Rf~)=iPIk /2c (71n k- eck (4.35)
k

and

wk(t) i(pak) /2c I*kk - rik 1~ka . (4.36)

Equations (4.6), (4.7), (4.35), and (4.36) are the building block

expressions for the remaining development. We now have all the information we

need to proceed. First expressions for the quantities n k' Tqk' CkP and Ck

(which are independent of r and t) are obtained in terms of the original

fields:

n7k 2 [ /c ik + 2c/'V'Pkknk i (4.37)

n 1 (4.38)

k 2c/V'wkffk jq~

[34 2c/iV'k 1
[V klc Ok kk+ek(.9

[34]
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and

k - + iv'lc jk -2c/iVp~k1rkl G6k .(4.40)

of course, we may also write

S f3r[ + I u (4.41)
c-' ilk k

TI d f c u (4.42)
k 2 i pa uik'k

Ck 2f r cCk k

and

Ck J [ 'd 2c 9 . (4.44)

4.2 Vector Potential

The Hamiltonian for the A fields, HA' is already diagonalized, as can be

seen from the equation

JA 2~ A-A (4.45)
2c

in the absence of external forces. The A fields are expanded as follows:

Au A (t) r) c/ -p a * u(.6
k k uk(r) k a ak k akuk (4.46)

and

A a k(t)rk(r) . [ cV2/-p, a*9 a (4.47)
k k ak kakk

[351
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where
Oak - iat (4.48) e

a-

and

a..

From the equations of motion for A and A in the absence of external forces,

A + v 0YVxVxA a 0 (4.50)

and

A - VxVxAy 0  0 (4.51)

we obtain the dispersion relation

Thak "-lyk 2  (4.52)

or

wake ivy0k2  (4.53)

in the agreement with the well-known results.
1 6

Substituting Equations (4.46), (4.47) in Equation (4.45), we find

HAUkk~I . (4.54)

We may also expand the momenta conjugate to the A fields:

k

- pk(t)Uk(r) (4.56)
k k'

Then, from the relations

p (_ A - xVxA o  (4.57)"-
2c (47

(36]



and

p + %-( 3Vv VxVxA) (4.58)

2c2

we find, using 'Equations (4.46), (4.47), (4.52), and (4.53),

Pkc *14 dk/ec sk 'ak (4.59)

and

Pkc * VP~dklft& k' a~g * (4.60)

The inverse transformations corresponding to H Aare

ak~ VPiak/2c7 Ak akD(.1

U 1Ptdak/2c A a (4.62)

k lY'8c/PwiIak Ak Oak (4.63)

and

* -w~7~Fp e*(4.64)
ak akk 'ak

We preserve the expression for HA in terms of the functions a~kin standard

form, while maintaining Poisson bracket relations in the diagonal representation

similar to the ones commonly found in field theory. We recall that the complex

first-order equations for the A fields (these fields are not explicitly of first

order, but clearly are equivalent to first-order equations) may be related to a

real field that obeys a truly second-order equation of motion. Let this field .

[37]
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be defined by the equations

Ak k g + rk/i(wak (4.65)

and

Ak .- k/'lak (4.66)

where

k W2 0(4.67)

Then we have

k = iak Ak (4.68)

and

k - •ak (4.69)

Using our dispersion relation for the vector fields,

u'k ' - if ok 2 , (4.70)

and the relation

vxVxAk a - k2Ak (4.71)

we see that Equations (4.68) and (4.69) are equivalent to our equations of

motion for the vector fields. At the same time, Equation (4.67) is the equation

of motion for a harmonic oscillator with coordinate , frequency wak, and

conjugate momentum pak given by

Pak " "(4.72)

Consequently, we must have

[%' & = [k' Pk' " ak,k' ' (4.73)

[381



and

(akDak,] ak ak-I -*. 0 (4.74)

Equations (4.75) together with Equations (4.71) to (4.74) imply that

Ek' Pk'1  lik' ~ik. 1 8k (4.75)

and

EaSi ~ k (4.76)

as asserted following Equations (2.47).

From Equations (3.48) to (3.51), (3.68) to (3.71), (2.45), and (2.46) we

obtain the relations

and

it XI' x9 I 1iJ (4.78)

where the fields xare given by ilk and Ck' We may show this explicitly as

follows:

[)k*, 4k I 2i~ffkI'' 1  ~k (4.79)

and

E k' I 4 (2[kk 2i'i ko 4'kl1) i kk' (4.80)

The factor i in Equation (4.78) is due to our use of Poisson brackets to describe

classical fields rather than commmutators to describe quantum fields.

(39]
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4.3 Conserved Currents

We can define variables analogous to the number operators in quantum

mechanics. Because we have a classic system described by Poisson brackets, we

must introduce a factor of i in our definitions;

N I an 0 U1~~? , (4.81)

N n • icc (4.82)
k k

and

Nu- n " iaka (4.83)-
a k k m~

With these definitions we obtain the standard relations

[n)k, lkh] = - rk kk,  (4.84)

[nk' nk'] = nkakk' ( 4.85)

[n k'Ck] - Ckakki (4.86)

(n k' C'] = 'Ckk (4.87)

[kak' ak ]  - k'kk, (4.88)

and

Lnak, ak,]- akokk, (4.89)

With

Ho H + HA. ( (4.90)

where

H (w = ( * +, * 1 , (4.91)
k k k k Ck k k

(401
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and

HA W 'akkk , (4.92)

we can immediately obtain the time derivative of the diagonalized variables from

relations of the form

xk - Exk, Ho] (4.93)

These relations are of a familiar form:

M 'i "W 11 (4.94)

k ""k k Ck Ck k

and

ak m -igWae% -k a~ a . (4.95

We now look for variables that are conserved with respect to Ho. some

immediate examples are NY, NC, N a and

m= iplE(1*n - Ck ) (4.96)
k k k k k

and

P U Xklnn + Ck C (4.97)

S. GREEN'S FUNCTIONS

The Green's function 0 (rlr') is the solution to the equation

(HA - W)G d(rlr') - 8(r - r). (5.1)

In Equation (5.1) we will assume that HA is a scalar, as we have previously.

All of the basis Hamiltonlans which we have discussed are given in terms of a

quadratic product of the field amplitudes, which are vectors. Thus far, we have

(41]* *-.*l
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assumed that this product is a dot product, i.e.,

H. - <xIx> (5.2)a

for any Hamiltonian H. in terms of the appropriate fields x and x
j

5.1 Derivations

G)(rlr') is first expanded in terms of the elgenmodes of HA# as is commonly

don e .16 '2 3 '2 8 - 3 1 Usually a linear expansion is made, but in anticipation that

since G is the inverse of H A it will be bilinear in the fields, we write

* -ik'.r' iker
(rlr,) G Gkk a k .rake ( (5.3)

kk

Substituting Equation (5.3) into Equation (5.1) we find
2 9

* -ik'*r' iker
6(r - r') "kk,( - wak)ak,e eke (5.4)

kk'

We will continue with this formulation. We could also express the

Hamiltonians in terms of the vector product, IX><x 1, (See Appendix C), in which

case we would have an operator formulation. In that case the discussion would

parallel the dot product case, and all of the following treatment would apply.

Most of the earlier discussion would also be valid, but it would be necessary

to replace the Poisson brackets with commutators.

Since

ar ) . - r') (5.5)

k

we must have

8kk'a' = ' (5.6)k 1- (ak

[42]
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Consequently,

ik. (r-r')r
a(rir') - (5.7)

k w - ak

Our expression for G is time independent. We may bring in the time dependence

of the Green's function through the relations

-iwt
&- ake (5.8)

and
I..a * iwt' (5.9

ak k ..

Then we define the Fourier transform of G as

* ik.(r-r')-iw(t-t')

(r~tr',,t') 1 --akak dw (5.10)
241K 0 - ak

From Equation (5.5) we see that
4.

G (r ,t lr',t'l) (r - r ') d 
(- i .(t 1t 1)

27 f " -ak

Now from Equation (4.54)

w ak ' i70 k (5.12)

is purely imaginary, so the pole in Equation (5.11) is on the imaginary axis.

The contour integration gives, upon interchanging t and t',

G(r,tlr',t') - i8(r - r' k 1t-t ' , t , t' (5.13)

0, t <t'.

Performing the integration over w and integrating over

r .r - r' (5.14)

[43]
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a,.

in Equation (5.10) rather than summing over k gives 1,

G(k,t-t') G(k,T)

i * a aepk 2T (5.15).

k

* dr G(r,tlr',t') (5.16)

Proceeding similarly we may find the Green's function Sl(rtr') corresponding to

H C SW must satisfy the equation.

(H )S(rlr') = -6(r - r') . (5.17)

Assume 1 8 "9  that S is of the-form

s'rlr'' rei(ksr-k'srE) *i(k-r-k'.r')1
SI'' W Lkk 'k Ik - kk'C C ke (5.18) -.r

4%

Then, substituting Equation (5.18) into Equation (5.17), we find, from Equation

(4.23) and an argument parallel to that above, that

"kk' (5.19)

and
a.%

C kk ,  -

S (5.20)

Therefore we may write

Su(rlr') - s:(r - r') - S r- r') (5.21)
'.

( 310k CkCk ik-(r-r) .22)

kk ,, .

'44V
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The Fourier transform of S , S(r,tir',t'), is then given by

S(r,tjr',t') = e(Tr)S"r,tlr',t') - l-T)SC(r,tIr ',t') (5.23)

A__-__ _ kId. ik.(r--r) - iwlt-t') (5.24)

8(r - r) 'Idwj 1 - .I-w~- (5.25)
2t J "rlk w + k

With

IDyok2

ilk wk 0(5.2 (526)

and

wCk (#k + iDy0 k
2  (5.27)

the contour integral gives

S (r,tjr',t') - i6(r - r')eik-)k , t > t (5.28)

0 1 t < t',

C )e~kT_0k2 T

S (r,tlr',t') - -i8(r - r')e t < t' (5.29)

"0 , t > t •

From Equations (5.25) to (5.27) and (4.15) we find

S(rtlr',t') 6(r" r') 2 wk e i(tt') 5.30)

.-



Finally, we find

S(k,T) = e(T)S(k,Ty 8(-T)S (k,T) (6.31)

2p

Si iWk T - Dk  , t > t,
k

-i I C *IekTk k , t < . (5.32)
k

5.2 Density of States

The phase space volume 2 corresponding to a variable * is given by

0 Id# dx a d . (5.33)

From Equations (4.6) to (4.8), (4.32), (4.39), (4.46), (4.57), (4.58), (4.64)

and (4.66) we see that

fdr- E: .(5.34)
k

By way of illustration, let us assume an isotropic system. Then we have

r 4xkdk (5.35)

k

We wish to convert the integral in k space to a frequency integral:

2
4fk dk -0 (w)dw . (5.36)

This implies that the density of states, D (a) is given by

(wa) = 4Ur 1 k2 (,)l / dw/dk 1 . (5.37)

Thus we can find D (w), once we have the appropriate dispersion relation. The

required relations are given in Equations (4.11), (4.12), (4.63), and (4.64).

An immediate complication arises from the fact that wak and w k are either

complex or pure imaginary for k t 0, and wak is pure imaginary. This means that

the population of the corresponding states changes in time. Each value of k

[46]
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corresponds to a unique value of w uk. w Ck' and w ak; so the dispersion relations

define curves in the complex w plane. Let the real part of a frequency w be

denoted by W' and the imaginary part 
by w". Then we have32

dw SK 2 +diW"1 2  1/2

dk dk dk . (5.38)

For the A fields we have the simple relation

2
(d"U a "k2  (5.39)=(ak =

Consequently

-1.5 0.5
I k'ldk w dw. (5.40)

If we assume the existence of a cutoff frequency w, we can normalize

.D(w ) to obtain

3 a (5.41)a, 2 1.5

m

For the scalar fields we have

n - Dk4  (5.42)

and

w ±iDk2  . (5.43)

In Equation (5.43) the + sign refers to the C modes and the - sign to the q

modes. From Equations (5.42) and (5.43) we find

ick f k k 2 (5.44)

[47]



Using Equations (5.38), (5.42), and (5.44) we find, with

w u Dw/2c 2  (5.45)

and w representing either ()or w :

(w)= (Y 1-22 (5.46)

2 3 3 4 "

In the limit

w << 1 (5.47)

we find

DM * 2 (5.48)

We note from Equation (5.42) that D (w') has a maximum value w' given by
m

I-'

D (w V2c~l-- -(5.49)

This is because the contribution to K from diffusion causes the w'(k) curve to

bend over at large k, and in fact to reach zero at a critical value of k given by

2k c 2c/0 (5.50)

If 0 is very small, we can make the rough approximation

da = )' , (5.51) ,

or

cd'' -.0 ( (5.52)

[481

~ ~ ~~ .**.- - -, *.



6. DISCUSSION

The approach taken in Section 2 to handle the difficulties of dissipation

is related to the work of Morse, Feshback, and others, 5 1 6 ,3 3 ,3 4 and in fact, is

inspired by the earlier work of these authors. However, the treatment given

here varies from earlier work not only in that it treats a more complicated

system, but in the diagonalization of H. Earlier authors separated H into a

conservative part that they diagonalized and a dissipative part that required

4special rules for incorporation into the theory. In Section 4, the entire

Hamiltonian is completely diagonalized, and dissipation is incorporated directly

into a formalism that is similar to that of more familiar systems. This

approach is especially convenient for the derivation of Green's functions. A

review of the papers cited above and other attempts to treat dissipation in a
35

Lagrangian theory is given by Dekker.

The diagonalized Hamiltonian for the scalar fields involves two species of

functions in the diagonal or N representation. In field theory, this

corresponds to the presence of a hidden variable that is not explicitly present
18-21

in the equations of motion. Usually this is a charge. Identifying this

variable for the scalar fields thus becomes a central problem.

[49]
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NMN-BODY TREATMENT OF NAVIER-STOKES FLUIDS

PART 11, EFFECTS OF NONLINEAR TERMS
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1. INTRODUCTION

The primary use of a field theory treatment for fluid flow will stem from

the nature of the perturbation generated. The character of such perturbation

series is determined by the relationship between the interaction terms and the

basis Hamiltonian, H . In Part 1, the bulk of the formalism for a many-body

treatment of subsonic Navier-Stokes fluids was developed, although the

discussion was confined to H0. In the following text, the nonlinear terms in

the full Hamiltonian, H, are considered. The discussion will be directed

towards flows with low compressibility, so that the nonlinear terms arising from

pressure gradients will be ignored.

We have succeeded in describing coupling of the scalar and vector potential

modes. This is done by expanding HI in terms of the diagonalized fields, and

then constructing a linear transformation of those fields that yield a new

rediagonalization, given certain approximations. The new dispersion relations

have a non-zero threshold level if the vector and scalar fields are both

excited. Also, the analysis of mode coupling due to the nonlinear terms

in the Hamiltonian has been extended to examine several similarities with the

literature on critical behavior and suggest a connection with "deterministic

chaos."

2. MODE COUPLING

The perturbation Hamiltonians, H1 and HNL, are now included along with H

to form the total Hamiltonian H:

H uH0 + HI + HNL . (2.1)

The objective is to diagonalize H. The Hamiltonian density, 'I is easily

obtained from .2A given in Equations (2.8) to (2.12) of Part I. We have

[53] 0
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, Z X, +. A2 (2.2)

with

J1 " -ro; + Or1 01(V# -#)-(VXA VXA) (2.3)

Sc

and

-9 2(7 ; + #Y0)(VxA - YxA).(VxA - VxA) (2.4)
SC

Equations (2.3) and (2.4) are expressed in terms of the time derivative of the

generalized coordinates rather than conjugate momenta for convenience. An

alternative form for J4( and A42 valid in the limit of constant.vorticity is1 2

discussed in Appendix E.

It will prove very convenient to use a compact notation in the remvlning

discussion. The Fourier-transformed variables defined in Section 4 of Part I

are now expressed in the shorthand form

qB qiq•r 1q (2.5)
• q+riq- q

qit qe 7  1q (2.6)

a e* •ik-P  a (2.7)
k ak k

• i=k.l" a
mkeake YA ,etc. 1.e

t

The use of the symbol is not meant to convey a change from field variables to

operators, as in quantum mechanics; rather it is intended to emphasize that the

compressed notation includes 7A Using the transformed version of the field

[54]
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variables given in Part I, Equations (4.2) through (4.7) and Equations (4.47)

through (4.50), the following expressions are obtained:

V"- YxA =i cV2/Pkkx( + k ) , (2.9)
k

Y + o yt -i(- q(C* - - (C ) C (2.11)

q p ) w - q q q q
q

6 V2w ak t
YxAyo + yfo'xA =cv0 -l -kx( (2.12)

k Pak k)

Throughout the discussion, frequent use will be made of the identity

f 3 ei (ptqt!)t or 6(p t q t k) .(2.13)

We will also take liberties with our summations, noting that they go from -N to

N with N large. It will be assumed that

N >> q , (2.14)

k k~q

i.e., we assume that the dominant interactions occur at long wavelengths. We

begin with H1 :

H1 u fd 3 r AI

0a°c- a).q Wt (. t -+W ( t

" V'pk - " nq+k ) +  q+k q+k Cq+k)]

t t
q q - nq - nq)/"ak (2.15)

(55]
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We also have

H fd r.4 2

16C2 kq Pak9~ Arw qq q, +Cq - q
qq

l(kxak-ixa 8(k + J + q) + kxa.t.jxa fi(i - k +. q)
%j

+ kxak.Jxat6(k - j + q) + kxat.jxat6(j + k - q)] .(2.16)

H2reduces to

H 2a- E((a) (7?q 'It) + *q (Cq C)I
2 ~ kq w V- q q q q

5vkqd5 v qqq

[k.(k + q~ka - 2kk +q -k+qaa

~ka_( *' 2ktk t q).amtl (2.17)

-a__ q)-ak -
k +q( q) % + k ak.q (k

Finally, consider whcHsgvnb

HNL r J NL

j...L C 311 ?q) + 41 eq)
16C2 pq Ap') y(dq(Ipfp+q q?' Wq(



(1?~q7p p~gq p p1+q p pC1  p1 p71 p 7

" n-C C y? Tit Tit c.-.t + nltt_ + ct_1 t + n t
ppq p+qP j;;p p+q p p+q p p+q p p p+q

P P4q Pp~q p p~q

2.1 Canonical Transformations

HNL can be transformed to obtain more manageable expressions. The needed

transformations are

Su - tat , (2.19)

4 uujt~ v . (2.20)
k k

t utal - a (2.21)

k,' k ' kq kq

4 k k(uAk - 'a) t (2.22)
kk

•k t - Va (2.23)
kI kk k kk

* t (k + q).(u t a t v a ) ,(2.24)k+q k'q k+q i--i-

,.

.t 1
C.+ - n + * k - ( (2.25)
q q q q q

C *C -71 +7n -C. (2.26)
q q q q q

d q=Cq + q -C4 _ , (2.27)
q q

%L= q -at 2.?

q q

[57] '
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q q q T_ + -Y 11t (2.28)
q q

0Up - C)- v(l -Ct) (2.29)
PP P P

* utot - Ct) - v(7 -_) (2.30)
p p p p pP P P

and *t u H (Tit - ) -V (71_- C.'_) . (2.31)p+qp+q p+q pq pq

In Equations (2.19) to (2.21) and (2.29) to (2.31), as well as in the

following material, the transformed Hamiltonians will only be equivalent to the

original Hamiltonians if the respective u's and v's are equal to one.

Unfortunately, if the transformations are to be canonical, the transformation

functions must be chosen to satisfy

u2 _ v2 . 1 (2.33)

u2 -V 2 -1 (2.34)
p -

These requirements overdetermine the u's and v's. A compromise may be found

in which (letting J represent k, p, or q)

u N +6 (2.35)

and

v N -( (2.36)

where

N >> 1 (2.37)

[Sol .,.°



and - A

ej << 1 (2.38)

in such a way that

Nc -1 (2.39)

The error for finite N is equal to 1/16N if the eigenvalues of the diagonalized

terms in the respective Hamiltonians are reduced by N. for each j. In thea
remainder of this treatment, difficulties with proper specifications for uj and

vj will be ignored.

Using Equations (2.29) and (2.31) HNL may be rewritten as

-ic -fo
H NL 9-Ei1("q - h1) + W Cq(Cq - (t)]t * p(p + q)

16(p rpq q q p~qpV peqp+qP

*H 3 + H . (2.40)

Similarly, H2 may be expressed as

H 0 1W~ (n~ - r) * (C - t)] bt b k-(k +q)
2 rjq q - Cq q q k+q k

8VP kq wak~ q

*H5 + M6 (2.41)

where the shorthand notation

k.(k + q)bt b • k.(k + q)- t (2.42)
k+q k A&+q A 9c+qlk

is used.

Hi is simplified through the change

Hi " - a kx(ak- at).q - l,+kdt+kdq (2.43)

1 v'P qic k wq~kcq+kcq I ~ ~ /"ak

(59] "
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where
2'

Vp - OP 2 (2.44)

Depending on the mean amplitude of the A and fields it will be convenient

to group the various terms in H as either

H = (H1 + H3 + H5 ) + (H C + H4 + H6 1 + (HA + H1) (2.45)

or as

H - (f 1.H, + H1) + (f2H + HNL) + (HA + H2 ) (2.46)

where f, and .f2 are fractions such that'

f + f2  1 (2.47)

and we define

H,1 . TI q (2.48)

H W ( c (2.49)

Consider the grouping given by Equation (2.45). We write this as

H H A + Hr + Hs  (2.50)

We have

icy
H (- k .kk - 0 kx(k- -at c  -iv d)/w ] (2.51)

A INA% ~ kqk qk q q

ak,
o V-pk k q

[akic - if)'( k- at).q(+kncqk - i1qkrdqk)/w q ] , (2.52)
kk qqk

[0

[60]
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H JEW TI 0j+ (n - Tit k(k + bt qb /Wr jq q q Sr n k ka

q Pw~ q q q kkqk a

ic 0 W (TI "71 )I p(p +. q)*t *I i7h(2.53)
16p' qrq q P pq p p~

q ~(1 qIq + qv o q k

(q17 q pp*qn Vi'- (2.54)

q p qppq

and

H5 . w~CqCtcq + - k(k + qbtb/

qq

0 1[iiCqCqtCq + gqtyo(Cq - Ct k(k + q)n bkq/w'ak

t j ~p *q)"Pq r -W(2.56)

2.2 Emery Transformations

Decoupled fields are now obtained by applying canonical transformations to

Equations (2.48), (2.50), and (2.52) of a type originally due to Emery.1 ,2

H Ais transformed by means of

k q (Wqek cqk - vq+k ndqk )Wq (.7

[611



ivk 2  (2.58)

ak - Ak + ifkyOJk/W ak (2.59)

k

In Equation (2.54) we make use of Equation (2.52) and the fact that

Jt...J , (2.62)
k k

*as can be seen from Equations (2.47) and (2.48). Using Equations (2.55) through

(2.57) in the relation

HD 1[daka4ak + ifkyo*k 'at)Jk 1(.3
we find, remembering that

a (2.64) 4

2 -1:
(Since the sums go from -N to N), and that y =1:

.21 W %kk (2.65)
HA kL akk k -k/Wakl .(65

This shows that the normal modes corresponding to the vector potential in the

excited medium are dressed.

Hr is transformed in a similar manner. We rewrite Equation (2.53) as

Hr q + gqco(flq - _lt)[k(k + q)Jb - ip(p + q)J 11 (2.66)

q

and make the transformation

rq -r + g yo[kqk q)Jb ip(p + q)J /q , (2.67)

q q qo 0bq i rq

[62]
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it r - g*. Y[k(k + q)Jb ip(p + q)J] / * (2.68)
q q o /(IOq hq

and

*t rt g*Y[kk q)Jb ip(p + q)j (~i]  (2.69)
qq 

q

From Equations (2.49), (2.50), and (2.61), it follows that

Jt- J (2.70)
bq b-

q

and

it 1(2.71)

q

Furthermore, since gq- 'nq,

g* " *d 9 (2.72)9;/ wq • gqlq

Using Equations (2.61) through (2.67) we find

H wrr+g 2 [k(k +q)j i~ q)Jf~
Hr q a)r~q q q b q - '- ~ q

[k(k + q)J1  - lp(p + q)J)i~' I (2.73)

,-.

Clearly, we may make a like transformation for Hs . To wit:

a gq*yo (Cq - C)]k(k + q)Jbq -ip(p + q)Jq)].

q q

C a 5 q + g*y [k(k + q)J-l( aJl/ , (2.74)q q qo b- ipp +q q W
q

st - gq, o[k(k + q)J( ip(p + q)J (2.75)

Ct st + g 7 [k(k, q)jt -p(p + q)J( 2.76)

q q qo 0 qJq ippq)q /Wq

[63]
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leading to the result

t *2
H s C ~s qs q g q k(k + q)j -q ip(p + q)J ]

[k(k + i - lp(p + qj / *(2.77) 4

3. COLLECTIVE EXCITATIONS

The form of the Hamiltonians H H ,p and H sis very similar to that of

electron-phonon coupling. 39This suggests that canonical transformations can

be made to new Hamiltonians H' H', and H;, which contain terms that are only

quadratic and fourth order in the fields, with no terms containing both vector

and scalar fields, and that the new Hamiltonians can be analyzed along the lines

of the BCS theory for superconductivity. B-8We now- pursue each of the desired

transformations in turn. H is given by Equation (2.49):

H * (aaa -lykkx(ak aLt)eEq(w.4e cq i v dt d/] .(3.1)
k k kq q~~ q

where S

Equation (3.1) may be written as

H A HO +H Al(3.3)

The transformed Hamiltonian, H may be written as

H uH+ H (3.4)

with

H 3~a a ka k(3.5)

(641



and, (see Appendix F) again recalling that y 2 -1,

k 2k 22

k ak k

~"~ ~Ct C Ct c VI dt kddt,_da
40pk% Jk ~ p pI..k:SL + -k ek + q(3.6

qq (c- W )2+ v_ + v 2 k 4 -

qq' [((q "cq-k )  (d2412q [(dq - (dq-k) .q

The meaning of the frequencies aq, wcq-k' wdq' and (dq-k' is discussed in

Appendix F, as are the frequencies %bq' bq-k'' wdq' and (q-k' to be found

below.

H r is given by Equations (2.50) and (2.51):

r1
HrU yq' 1q q o0 q ~'q -i

q q

with

We write Equation (3.7) as '

H r H o + H rl (3.9)

and obtain a transformed Hamiltonian H; given by (see Appendix F)

HH +H' (3.10)

r Hro r1

where

H ( (3.11)

rO ifq
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and

H'
r

1 g2i l p(p + q) P'I(p, + q).;r~~~ * t/( - Wd -2_w2]

2q Wq Ipp, p -qp- ((*p Oip-q "q p p+q

-Ik(k + q)k'(k' ~ t b t ~ "b 2 +kq W2 i W (3.12)

kk' ~q kkl-qk-/~wbk- wb-q Yq 2

We have used a - sign before the second term in Equation (3.12) and in front of (aq
qp

within that term as a reminder that the frequencies 'bk and w bk-q are purely

imaginary. .

The expressions for H and H' are similar to those for Hr and I

H aH +1 -2 'HC g( ..
5 so 51 q wCqqq- Yogq(q qt

k(k + q) - -2p(p +q)*q p/epq (3.13)

where

* -W qBw (3.14
q Cq"" (34)q

H; HS+ *H' (3.15)

where

H - qtc (3.16)so q ~qq
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and

H' a *2!
51 2g'qq.'

Ip(p + q)p'(p' 
-)* 6*q],p2 2

+flk(k +q)k'(k' + q)bt bt, ( 2 2 ~2 (.7
kk' k+qkbk'-qk' (bk Wbk-q) +(Cq ak (.7

We now make the definitions:

1 2 ~ k(k + q)bt bk
Abq i2Vq"q 2k 2 (3.18)k l(wbk - w'bk.-q) i pnq ak

1 *2k(k +q)bt b~
ASq a jq wq 2 ,2 ~2 (3.19)

bk k-q Cq wak

A 1 k 2f 2  '1+k a+k a 3.0ck ak k q( )2 24 3.0
c(wq Wcq-k~ +' 2V 4]d

& i k2 f2 a1'0 k dd"dk ?rakk k I - ~ (3.21)
Edq Wdq-k Oq

1 2 ~ p(p +q)*t 4o
*q 9 q~qL 2 +! 2 (3.22)

P, ((OP (a (S)4pq) 2 2q]w p wp~q
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and

,, 1 *2 P (P (3.23)

.- [P - (l::pOq) - dql,pp+q (33

We now interchange the primed and unprimed variables in the double summations of

Equations (3.6), (3.12), and (3.17), sum over the primed variables, and use the

definitions (3.18) to (3.23) to write

H =H a + HX  ,(3.24)

where.

H1 "b qk" b (Alt + AI ) A (3.25)

and

1Ho 3.21iand 3.26 c A no [dt in hd
X I[Wn~qtq q Wq qq +k w- q-k q ck q-k dkd qdkl

- A +A (3.26)

p p-qp *q *

Equations (3.25) and (3.26) are now used to find the normal modes of the

coupled system, given the averages assumed by the definitions (3.18) to (3.23).

To simplify the problem, some sort of approximation is needed. Let us choose to

replace the inner summations in Equations (3.25) and (3.26) with typical values,

which we will designate with capital letters. For example, we let

P
p

Then new canonical transformations can be made to obtain the dominant modes of

the system. We first note from the definitions (3.18) to (3.23) that the

various As have resonant denominators at small wavenumbers, so their main

(68]



contribution should occur at long wavelengths. Let us begin with H . With the

transformations

a+k a bk + bkQ (3.27)

and

B k a b k - b ,Q (3.28)

the average value of the second term in Ha may be expressed as

A; A )(ek k - 61k-k

In the limit as Q -.0 and the As remain finite, we find

Ha 2( , + A,)( , at)( a (3.29)

kk

3Again using a standard procedure % H~is diagonalized with the transformations

U va (3.30)

% - va , (3.31)
kk

where

u2  v2 -. 1
k

and

uk' vk-i1 . (3.32)

The eigenfrequency for the diagonalized Hamiltonian, wk, is given by

Gak "ok + '1k (3.33)

where

2 .2 2 (334)
ok ak + 1k

[69]
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and -

W 1kZ(Abob) (13.35)

Wak now is complex and is no longer a simple quadratic in k.

The expression for the scalar Hamiltonian is considerably more complicated

than for the vector Hamiltonian. Consequently, it is helpful to make a number of

simplifications. First we interchange the p and q indices in the last term in

HX .e then make the following a,.,roximations:

* let p,k -0.
* let ( Acq UAdq Ao

* Keep only terms with the same value of q in the last (*) term.

*2" Drop Dq compared to cq for small q.

We then make the definitions

A 4N A" (3.36)

2(ak + q) A (3.37)q q, l' , vw (

qq

Wlq 2( q -A*) (3.38)

and

(o -wq + 2w + 2A (3.39)oq q q

and find

Hx3W(~~ CC)* &q1~~41 ] (3.40)
qq

Proceeding as for w., we find the eigenfrequencies of H to be given by
2 2

W2 "o W -1 (3.41)_i

(70]
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The development given above has strong parallels with the Bogoliubov theory

of superfluidity8 '9'15-19 and the BCS theory of superconductivity. However,

the similarity in form of Equations (3.6), (3.12), (3.17), (3.25), and (3.26)

to the Hamiltonians found in those theories is not sufficient to indicate

similar critical behavior. In the BCS theory, the Poisson brackets are replaced

with (Fermion) anticommutators, leading to a dispersion relation of the form

~2=2 2 (3.42)
"0 1

where w 1 is a constant. This produces a gap in the dispersion relation at low

wavevectors. In the Bogoliubov theory, Wo scales as k , with w1 again a

constant. This leads to a different k dependence for the eigenfrequency as k

increases. A dip in the dispersion curve can result for appropriate interaction 5.

potentials, creating an equivalent gap in the dispersion curve.

In the treatment given above, we have no gap or dip in the dispersion curve.

and hence no similar critical behavior. A gap will occur at small k or q if

the system is bounded, but this boundary condition effect is different from an

intrinsic bulk effect due to many-body interactions. Consequently, no clear

conclusion can be reached regarding critical behavior, as the inclusion of higher

order terms or an examination of the various As may yet indicate non-monotonic

dispersion curves.
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1. RULES FOR DIAGRAMS

Rules for drawing diagrams, summing them, and calculating the quantities

they represent can be derived by examining the form of the Green's function

given in Section 5 of Part I and following the diagram procedures used in

quantum field theory. 18The vector fields obey a diffusion equation, which is

very similar in form to the Shroedinger equation for a nonrelativistic electron.

One problem that arises is that the isolated disturbances of the solenoidal

fields do not propagate, but simply diffuse. The Green's functions for the

scalar fields are of the same form as those for phonons, which is not'

surprising, since the scalar oscillations are essentially sound waves.

Therefore, the diagrams for the scalar fields should obey rules similar to those

for phonon diagrams.

The following rules are very close to those given by Shultz:1

(1) Draw all connected, topologically nonequivalent diagrams with 2n

vertices and two external points, where three lines meet at each

vertex. At least one and as many as three of these lines may be dotted

lines with the remainder (zero to two) drawn as solid lines.

(2) Write down the contribution from each diagram.

(3) Sum these contributions.

The contributions to a calculated quantity corresponding to various diagrams

are as follows:

(1)- For the contributions to the numerator of the two-particle Green

funciondra twopoits abelingthe r ad r (a whih lneswil

functiondra two points labelling them r and r (at which lines willen)

anywhere on the paper. Every diagram will ultimately have a line with

an arrow on it leaving each point labelled with an r' and a line

[74]



line arriving at each point labelled with an r. For the vacuum

diagrams, there are no points labelled with r's or r"s.

(2) To get a contribution in which interaction occur n2 times, draw n2

points labelling them y1, Y2 . .Yn 2

(3) Add directed solid lines and dotted lines between points so that each

"internal point" (i.e., a y or y') has three lines either going into

or out of it, and each "external point" (i.e., an r or r') has one line

out of it (if it is an r') or into it (if it is an r).

(4) For every element yi y., write G (yily ).a, 0 ij

(5) For every element Yi yj, write S(yilYj). Dashed (phonon)

lines need not be directed, because (S) - S(-k). It is usually

convenient to direct phonon lines just to keep everything consistent in

a diagram.

(6) For every element Q , write p o(yi) = lim G(r1 - r2 , - T).
Yi t-+O ".

(7) Integrate over all values from --w to of the time and three spatial

coordinates of every internal point.

In practical flow fields, it will be necessary to operate in coordinate

space. However, since it is usually much easier to perform calculations in

momentum space, the rules for summing diagrams in momentum space are also given:

(1) Draw all distinct structure, as in r-space. All vortex lines must be

directed. Direct phonon lines for convenience.

(75]
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(2) Assign p's and q's to all lines so that the sum of the energy and

momenta entering a vertex equals the sum of the energy and momenta

leaving a vertex.

P
(3) For every element . include a factor GolP).

0

(4) For every element -9--o-- include a factor S(q).

An inspection of the nonlinear terms in the Hamiltonian, discussed in Part

II,. shows that there will be three types of vertices, depending on whether the

number of solid lines is 0, 1, or 2 as shown in Figure 2. If there are two

solid lines (Figure 2a), then a vertex factor of

U 0 klk + q) (1.1)U=%k /lot

should be included. If there is one solid line (Figure 2b), the vertex factor

is

0 (k+g_ kq (1.2)

ak
F.

If there are only dotted lines (Figure 2c), the vertex factor is

iY C
0Wo p(p + q) (1.3)

Since the vertices each correspond to an odd number of fields, diagrams will

contain an even number of vertices. Assume that the Linked Cluster Theorem holds

(76]
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Figure 2. Basic Diagram Building Blocks.
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and consider only linked graphs. The simplest two-vertex graphs are shown in

Figures 3 and 4. Apparently, the "bubble graphs" shown in Figure 3 are not

allowed except when the line joining the bubble to the rest of the diagram

carries zero momentum. Some 4-vertex diagrams are shown in Figures 5 and 6.

Obviously, the diagrams rapidly become complicated as the number of vertices

increases.

Propagators are represented by uninterrupted lines; those without

interactions are given by single lines, while those with interactions are given
I II I

by double lines. Thus G is given by , by 11, S byl , and S by 11
I II

2. SAMPLE DIAGRAM CALCULATIONS

Standard results can be borrowed from the literature on diagram calculations
3 ,9 ,1 0

in quantum many-body theory, albeit some of the diagrams for the Navier-Stokes

problem will have a slightly different form than the corresponding condensed

matter diagrams. First, some definitions3 may be adopted without alteration.

A self-energy part is defined as any diagram without external legs that can be

inserted into a given line. A self-energy part which cannot be broken into two

unconnected self-energy parts by removing one line is defined as an

"irreducible" or "proper" self-energy part. Let us begin with Dyson's equation,

taking the vortex propagator as an example. The procedure is to show that the

sum of all proper diagrams can be arranged in a geometric series:

[78]
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Figure 6. Examples of Four-Vertex Diagrams.
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Substituting Equation (5.7) of Part I into-Equation (2.1) yields

G = () -w ak + E)-1  (2.2)

A similar equation will hold for S. In practice only a few dominant irreducible

diagrams are summed to obtain E. Fortunately, a good estimate for G can be

obtained using Equation (2.2) with only a moderately accurate expression for E.

Effective interactions due to sums over large numbers of diagrams can be

expressed in terms of new types of diagrams. Define any diagram without

external legs which may be appended to a vertex as a susceptance part, and any

susceptance part-which cannot be reduced to two simpler disconnected susceptance

parts by breaking a single line as a proper or irreducible susceptance part.

Examples are given in Figure 7. Let the sum over all proper parts be denoted by

X• (2.3)

Then in a manner similar to that used to obtain Equation (2.1) we find, if

bubble graphs can be ignored,

[841
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where

* (2.5)
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3. HEAT EQUATION

We describe heat transport by the equation
1 1 - 16

+ V07 + DT V2 T- . pm (P + vVP) + pe (3.1)

where

A' - /pCp (3.2)

A is the coefficient of thermal expansion:

1

AaTP (3.3)

Cp. is the specific heat at constant pressure, and DT, the coefficient of thermal

diffusivity, is given by

D= I/pC~ . (3.4)OT=•

For gases A - 1/, while for liquids A becomes very small. DT is usually

described by the symbol x, which we are reserving for other purposes-.

The symbol

2

1 ay avae= ~ ax;- (3.5)

where e describes the generation of heat due to frit:tion. It is small, and we

usually ignore it.

[87 J



3.1 Thermal Laaranaian

A Lagrangian density which describes Equation (3.1), A T is given by

A -. 1 - TT-(' -T) + (f- T)2.( , - ,)20 0 22

- TVT. T - AI' [# + # + (V# - V#:).(ToV4 + V-o)l

1 22- 2
1- ( + f) a *

8x'8x ax~ax/

GT[I(TI f - Tlo) -(T fo " o'o)]9(# + i )  (3.6)

with

7 T- T + . (3.7)

The third term in Equation (3.6) has been inserted to avoid adding an extra

term to the Navier-Stokes equation. The A' term in Equation (3.6) will add a

term to the Navier-Stokes equation of order AIDTV27 . We will assume that this

can be dropped. The last term will not contribute to Equation (3.1), but will

add a term of the form
16

LT(Q7 - 10)1 (3.8)

to the Navier-Stokes equation. As in the case of the velocity potential, the

simultaneous occurrence in the equation of motion of terms that are of both even

and odd order in the time and spatial derivatives requires the use of complex

fields in the Langrangian. We will allain have relations for odd derivatives

that will require hypercomplex fields ctoefficients to satisfy:

- 0 Ty 0 (3.9)

088
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and

Vl- ks - VTvk .(3.10)

If we writs

V a k - Vk(3.11)

and

P (0 + *Y) (3.12)

and disregard terms that cancel upon variation of *and *or are included with

the velocity equations, then the Lagrangian LT. leads to the equations of motion

yof + vVT + DTV T - A'T(Y A + v-VP) ,1 im 0 (3.13)

and

yJ -vYT +TV 0 A yo + v*VP) +.ipe 0 (3.14)

Using Equations (3.9) through (3.12), the addition of Equations (3.13) and (3.14)

leads to Equation (3.1), as desired.

The momenta conjugate to T and f are given respectively by

T 2

and

Wu - (3.16)



*,-V U"rV '% Wj W-'w WT.V. ~ 7 W 'V -: - ~ '- *. 7, . -j'

The "Hamiltonian" density -VT corresponding to AT is given by

:1.fv f - .1f- T)2( - V 2i) + D TT

+ ATT(* * + (Y# - Y*)*(yY4v + YO +] -p( + . (3.17)

The Poisson bracket relations are similar to those for the A fields:

[Ti(r), T.(r')] (r)Tlr-, T.(r')] = 0 (3.18)

and

[Ti(r), T.(r')] = (r - r'). (3.19)

We may expand the fields T and T in a familiar.way:

T * ~ T icdrkt (.0
T T k e uk(r) (3.20)

and

i(Jrkt-
k k k(r) (3.21)

where we again take

iker
uk(r)= . 3 -

From Equations (3.15) and (3.16) we also have

1 1TiTkt-ik.rIcnT  2 k Tke

and

-T e 1 T k t .ik 
"r

IcT 2 k ke

[901
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The dispersion relation obtained from Equations (3.13), (3.14), (3.20) and

(3.21) is

2
'wk iv-k - D Tk '( 0 P + v-YP) + pe/T .(3.25)

If we drop the term on the right side of Equation (3.25), we obtain simply

2~ ~k+i~ (3.26)

We see that temperature disturbances are damped by diffusion processes and are

carried by the man flow; they do not actually propagate, as pressure pertur-

bations do.

The relations

[ T, H] (3.27)

and

Tu( 4 NJ (3.28).

together with Equations (3.17), (3.18), and (3.19) yield

2 1*

70T+V*T + 0T VT -ATYO0P+ v*P) ivpe+ (T f)Yv (3.29)

and

2-
Ty0 v*VT - *T ~~ 0 ~ + VOYP) - jvpe + (T -T)Vv .(3.30)

Subtracting Equation (3.30) from Equation (3.29), we again obtain Equation (3.1),

as we should.

3.2 General Treatment of Passive Scalars

In multicomponent fluids, we encounter equations of the form

+ * 2 +0v2* (3.31)
~ *~(&



Equations of this type may be treated by Lagrangian densities of the form

(Y 2 2 2-

2DyVYVY - [yf0(Y) - Yf0(y)] ,(3.32)

where

uY +Y (3.33)

To Y Sy(3.34)

-f Yk - Tk' (3.35)

and fo is the linearized part of f. The conjugate momenta corresponding to Y

and-Y. are respectively

2 (3.36)

and

;Y 1

The Hamiltonian density corresponding to Equations (3.31) and (3.32) is

24t/ y ( 9W- *.(V - YYY) + (q - Y) (V2  Y 2) 2DVYVY

+ Yf 0(Y) + Yf O(Y) .(3.38)

The Poisson bracket relations for the system are of the form given in Equations

(3.18) and (3.19), with T replaced by Y. We may transform Y and Yusing the

relations

s ~Y k 0 (3.40)
kk

(921



wi th

yk "v.k + iOyk 2  (3.41)

The description of the total density p is somewhat different than that for

the species densities s, since there is no diffusion term. Nevertheless, we

will still need to construct a Lagranglan density in terms of adjoint fields.

First we show the results of an attempt to formulate a description in terms of a

single field. The continuity equation

+ V.(Pv) = 0 (3.42)

may be written as

+ V-(V-) + P(V2* + V2- (3.43)

Equation (3.43) can be obtained from the Lagrangian density ., given by

c3.

P_- _E pVp.( v - *)] . (3.44)

We see that for a change the density field is purely real. L makes no net

contribution to the velocity equations and the equation of motion resulting from

it is unaffected by a variation of the velocity fields. Unfortunately, however,

the momentum conjugate to p, x , is given by

c3
c - (3.45)

Since we cannot formulate Poisson bracket relations with field variables that -

are self conjugate, we must invoke adjoint fields, even though there are no

second-order derivative terms in Equation (3.42). We see then that Equation

(3.42) is a special case of Equation (3.31) with OP = 0.
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4. APPLICATION OF THE RENORMALIZATION GROUP

by John Erdei

In this section we will present initial results on the applicability of the

renormaltzation group to our model. We note that both the static and dynamic

forms of RGT are of interest. The dynamic version can be applied directly to

the results of Appendix E, while the us* of the static renormalization group

requires the recasting of the model in a form similar to that of Landau-Ginzburg

Theory. Such a technique would be used to study the steady-state features of a

given flow configuration. Keeping in line with the thrust of the previous work,

we will use the equations of motion from Appendix E to implement the dynamic

renormalization group procedure.

Our intention is to introduce a perturbative expansion for the equations of

motion given in Appendix E. The goal is to categorize the fluctuation

integrals which contribute to the renormalization of the viscosity. Once the

form of the fluctuation integral is identified, we can examine'the applicability

of the renormalization group procedure and determine a direction for future

work. Due to the complexity of the model and the number of integrals contri-

buting to the renormalization of the viscosity, in this report we will display

the derivation of one of the contributing fluctuation integrals. Two possible

expositions of the renormalization group can be considered; one involves the

averaging of fluctuations over all wavelengths. The static form of this proce-

17 1dure is described in Amit, while the dynamic version can be found in Lovesey.

The second allows for the averaging of fluctuation over some defined length

scales. This system is in line with the iterative form of RGT developed by

19202Wilson, and applied to the Navier-Stokes equation by a variety of authors. 20 2 2

[.9

(941,
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4.1 Equations of Motion

We will use the equations of motion (E.20) to (E.25) to generate a correc-

tion to the physical parameters in the systems, and then examine the results for

the application of the renormalization group. The complexity of these equations

of motion is indeed great, and for this report we will display a portion of the

results of a perturbative approach to fluctuations. As a system undergoes some

transition to turbulence, it becomes dominated by the formation of vortices.

The vortices are associated with the local rotation of the fluid. As such, we

will take the interesting fields to be the set a in the following exposition.

Recall that these fields are related to the solenoidal part of the velocity

field A. We begin with the set of Equations (E.20) to (E.i5). We will intro-

duce-the notation that any wave vector is now placed as an argument for each A

field, leaving subscripts to denote Cartesian components. With this notation,

we have:

a(k) a-i a (k) + f(k) eilm1 k1(AN(q,k)" t (q~k)11(q) + 8 (q,k)rq(q4.k)Ct(q)

+ C (q,k)rl(q)C(qek) + 0 (q,k)Ct(q)C(qak)] ,(4.1)

at(k) iw ~ t(k) + f(k) I k [A (q,k)nt(q~k)7n(q) 8 (q,k)fl(q~k)C~t(q)
I aki q ilml m m

+ C (q,k)fl(q)C(q.k) + 0 (q,k)Ct(q)(q.k)J (4.2)
m m a

1q)=-ICwiq1(q) + I f(k') pk'( (k') q at ~kk)) ~

.8B (q,k')Ct(q~k)] *(4.3)n
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;t(q) i-ylqylt(q) - f(k') pk' (aq(k') -at(ks)](A (o,kl)lt(q+kI)
enpq q n

+ C n (q~k')((q+k')] 44

j(q) *IdC(q) + I f(k'),e k'[at(k') -at(k-)JCB ,(q,kI)7nt(qikI)
'C I rsts tr

+ D (q,k')C(q)] (45

and

jt(q) l(3~(q) + I f(kl)e .. k.'(at(k') - at(k)' (q,kl)1nt(q+kl)

+ D r (q,k")Ct(k'-q)] .(4.6)

We will remove the tim derivatives in these equations by introducing an

appropriate frequency, so that, for example, we can set a*-1ae. As a

technical convenience, we-also introduce a random forcing term into each

equation. Using these steps, we write

a()=a akF()+G kfk I eimA~~~ t~qkq

+ B 0(q,k)rn(q~k)Ct(q) + CO(q,k)Iq(q)C(q~k)

+ D*(q,k)Ct(q)C(q~k)] ,(4.7)

a t(k) 0 at() a1k 0 a t (k)f(k) c A(~~ytqknq

* B 0(q,k)n~q~k)Ct(q) .. C*(q,k),i(q)C(q~k)

i* 0D*(q,k)Ct(q)C(q~k)] ,(4.8)
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lq)uG'1(4)Fn(q) + G l(q) I f(k')e k;[aq(k') a at(kl)][A (q,k')yl(q-k')
k npqpq q n

+ aB (q,k')(t(q+k')] (.)

*i~q GB(q)F t(q) +. Gl (q) If(k')e k'(a (k') - a(k )]

k- qp q

+ [A (q,k')yi*(q~k) + c (q,k')Uq+k')] (4.10)
n ni

C(q) - Gc(q)Fc (q) + Gc(q) f(k')e k'(at(kl) - .t(k')]
rstS t

+ [B t(q,k)ylt(q~k') + 0Dt(q~k')C(q)] ,(.1

and

ct oct q)Ct~ ct ti
*q - a qF(q (q) I f(k')e kl(at(kl) -a (k )) I

k' rsts t p

+~ (Cr (q~k')yl(q.k) + D (q,k')Ct(k'-q)] (4.12)

where
6...

G! .(k) *(4.13)
(-icd + lcdak) ~1

t a.
6 a(k) - ii(4.14)

ij (' - 'ak)

Gl Mq (-icdlc 1 wr (4.15)

17 1q

G (q) U 1(4.16)

c 1 (.7
G (q) (4.17

(-lciw cdq 5

Cqp
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and

Ct 1 (4.18)G (lq) = liai - lbq)

are the bare Green's functions for the system. We will be interested in working

with Equation (4.1). Here

wak ivk2  " (4.19)

4.2 Fluctuation Intearals

We will impose the condition

<FilklF lk')> - 8 1Q(k)(k-k') (4.20)

where < > denotes an average, and, if desired, some function of k can be defined

through Q(k).21 We will simply take Q(k) to be a constant. We will introduce an

iterative perturbation solution to Equation (4.7) by averaging over the

variables n and C. To do so, we introduce Equations (4.8) to (4.12) into

Equation (4.1).

It is clear that even with the simplification of only treating the equations

for the variables a, the complexity of the iteration is formidable. For the

purposes of this report, we will examine one specific term in the series, and

show its relationship to the formal renormalization of v. Under the described

iteration procedure, one can show (See Appendix G) that Equation (4.7) can be

recast into the form

< ( G) (k)Fa (k)>

+ <Ga w(kl k I k [ Gn(q+k)Gt(q)G?(qek)wj w,., rstq(llql

[f(k)Am(a,k)][f(k)Ar (q,k)]G~'(k)]Fs(k)> +...... . (4.21)
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or

a.(k)= (G* (k) + Ga '.M ekekit wlmk1rstks

Q4G(q+k)GIt(q)G"lq+k)f(k)A (q,k)f(klA (q,k)

q 0 r

Ga (k))F!(k) + . . . . . . (4.22)it 1

We can therefore define a (partially) renormalized Green's function in the formu

.%-

Am (q, k)Ar (q, k) (q+k)Qt (q)G(q+k). (4.23)
q a

One of the effects of the non-linear coupling between fields is to alter the

matrix structure of the bare Green's function, so that it becomes non-diagonal.

The off-diagonal elements indicate that the viscosity matrix, which was

originally diagonal in the linear theory, becomes a non-diagonal viscosity

matrix. This can be seen since one can invert Equation (4.23) and identify the

viscosity matrix. In the linear theory,

a .(k)]1 6I~. (4.24)[G~lk]-1 - t i + i wak) 1.4

-G * [* i] 2 r-

E -i i  [ ]k (4.25)

which defines the viscosity matrix v8. When the (partially) renormalized

Green's function given in Equation (4.23) is inverted and the renormalized --

viscosity identified, the viscosity matrix will no longer be diagonal, i.e.,

[G ij(k)] •-iwa - .k (4.26)

One might associate the appearance of off-diagonal elements in the renormalized

viscosity with the generation of a turbulent eddy viscosity matrix. The exact

nature of these off-diagonal elements requires further study. %N
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We see from Equation (4.23) that a complete description of the viscosity

matrix requires the evaluation of the sum

Imr (k) - JAm(q,k)A r(q,k)G"(q+k)G1t(q)GI(q+k). (4.27)
q r

This sum typifies one of the contributions of the " and C fields to the study of

the properties of the a fields. It would be convenient for future evaluations to

replace this sum with an integral,

I d3kg(k), (4.28)

k

where g(k) is an appropriately defined density of states. Then the sum given by

Equation (4.27) can be written in the form

I (q) = J d3qg(q)or

[(2qe klm wa (k) + (qe + km) (q+k) + q 1 (q)]
r- -

22

[(2q kr )w (k) + (q + kr)( (q+k) + q w (q)]

r r 8rr n( 4 .2 9 )
[w - wy (q)],

or,

.1 -

Iorlq) = 21 dx d3qg(q)[12q m+ km )wa (k) + (q + k )m (q+k)+q mwi (q)]J0  Ji ma m mr n -

[(2qr + k wa (k) + (qr + kr )wn(q+k) + q rw (q)]  (4.30)

(1- x),(q) - xw,(q+k)]
3
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where we have used the Feynaan method of folding denominators 1

r(a. + a2 
+  " a

a1 a2 a n rl) r2 "'" ...Ran) ""12-d dx1
I d2 2 n  n-

a a a 2- 1  n-1"1 a -1r,
x x2 ... X (1 x x X

='1- 2- n- 1 n-
1n

8'+x a x 2 n- (1 0 x -x - . n )a
1 1 2 n-i - -

and
0 4x 4 1 X + x + ... + x 4 1. (4.32)

1 2 n-1

At this point, the requirement of a renormalization group calculation can be

based on two points. If the integral I (q) suffers from infrared (q - 0)
or

divergences, then the renormalization group method can be used to discuss the

removal of divergences. One may also incorporate a procedure which allows for i

the treatment of the fluctuations in the q and C fields only over a prescribed

set of length scales. Assuming a constant density of wavevectors, the integral

'1

I (q) indicates a q-dependence of the form

d-6 qq , (4.33)

which suggests that the integrals will suffer a power-law divergence for spatial

dimensions below six. A renormalization group treatment which employs an

c-expansion technique would be valid only around six dimensions, and would not

be reliable for a three-dimensional system. Similarly, one would have to

determine if the iteration is defined such that higher-order-fluctuation

integrals do not introduce higher-order divergences. If so, the renormalization

group procedure will fail. .

[101]
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The procedure may be used, however, if one assumes an upper and lower

cut-off in wave vector. For example, shell integrations may be used to integrate

over length scales from a long wavelength on the order of the size of the

appropriate region, down to the Kolomogorov scale. We could then carry out i

integrals of the type

J d 3 q J: '1 d3 q (4.34)
A.

where the A's define the wave-vector shell. The shell integration could then be

iterated over the shells (i.e., over values of i) until the entire wave-vector

region is covered, or the effects of fluctuations on a specific scale can be

treated by examining only one of the shell integrations. This method would not

result in divergent integrals due to wave-vector dependences. Since the

interactions between the a fields and fluctuations of specific lengths are of

interest, this is the technique we would pursue.

(102]
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SUMMARY AND SUGGESTIONS FOR FUTURE WORK

We now review the development of the work described in Parts I through III

and explore the implications for further study.

Summary

The Lagrangian for corresponding to the Navier-Stokes equation was presented

in Part I, Section 2, and the basis for deriving it is given in Appendix A.

Equations of motion for the linearized system were derived using Euler-Lagrange

relations. The Hamiltonian and Poisson bracket relations were derived from the

Lagrangian, and equations of motion were again obtained. The equations of

motion obtained from the Hamiltonian and the Poisson bracket relations were

identical to those obtained from the Lagrangian, showing consistency in the

theory. The relationship between the above equations and the Navier-Stokes

equation was also demonstrated. The entire development given in Section 2 of

Part I depends upon the assumption that the velocity potentials may be expressed

in terms of the sums of hypercomplex fields and their adjoint fields. The

justification for this assumption is discussed in Appendix C. It is not clear

whether the postulates given in Equations (2.5) and (2.6) of Part I contain a

physical basis or are merely a mathematical device. However, without these

postulates, the entire theory falls through. In Section 3 of Part I the

symmetries of the Lagrangian were examined to derive conservation laws and to

determine those variables which are conserved with respect to the basis

Hamiltonian, Ho . The derivation of the important stress-energy tensor is given

in Appendix D. The form given in Appendix 0 pertains only to the scalar fields.

A four-vector formalism was derived to include the solenoidal fields in the

September 1985 monthly report, but was not included in this report as it was

(105]
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judged to be unwieldy. The symmetry properties of the Lagrangian and conserved

variables can be used to analyze the transition from laminar to turbulent flow.

The Hamiltonian was diagonalized in Section 4 of Part I. It was found that

two different fields are required to diagonalize the scaler fields. This

suggests an analog with the description of a charged meson in quantum field

theory or perhaps the electron-hole description of a metal. However, the

physical significance, if any, behind the need for two different diagonalized

fields remains elusive. One possibility is that the fields describe sound waves

in which local compressions are in phase with the maxima in the local velocity,

and that the C fields describe sound waves in which local condensations are out

of phase with the local velocity.

Green's functions were derived in Section 5 of Part 1. The form of the

propagators for the potential fields resemble phonon propagators, while the

propagator for the vortex fields resembles that of a nonrelativistic electron.

This suggests that there may be an analogy between fluid dynamics and the

electron-phonon problem. The development of Part I contains all the elements

needed for a field theory. Part I thus describes the core work of this report.

Its consequences were explored in Parts II and III.

Part II illustrated how the canonical transform procedure common to quantum

field theory can be used to investigate mode coupling and reveal analogies with

various critical systems which are relatively well understood. The discussion

of Part I suggests that the many-body formalism can be useful not only for

describing the interactions between distrubances in fluid, but can also be used

as the basis for other descriptions of turbulence, such as the "deterministic"

approaches currently in vogue.
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Part III is essentially a preview of more advanced calculations which can be

based on the developments of Parts I and II. Rules for diagram calculations

were given in Section 1 of Part III, and simple Illustrative calculations were

given in Section 2. The rules were made by analog with the rules for condensed-

matter theory, and may need to be modified following a thorough review.

Section 3 of Part III showed how the concepts of Part I may be applied to

describe additional phonemena, especially the behavior of passive scalars. The

heat-budget equation was used as an example. This treatment shows that the

concepts used in this report can be applied to the solution of a wide range of

partial differential equations, including but not limited to other dissipative

motion. Section 4 gave an.example of a renormalization group calculation'which

was done by John Erdei. This extensive calculation illustrates how the

renormalization group can be used to include multiple scales in a calculation.

Conclusions and Suaaested Research

The formalism developed in this report is internally consistent, and shows

strong parallels with field theories for other systems, as was intended. It

appears to satisfy the objective of deriving a Hamiltonian for the Navier-Stokes
1*

equation that can be used to carry out many-body calculations of turbulent

flows. This work indicates that all of the standard techniques of field theory,

including canonical tranformatlons to redlagonalize the field variables, the use

of propagators, and diagram calculations can be brought to bear on turbulent

systems using this or an allied formalism, notwithstanding that the development

is entirely classical, and includes dissipation. Indeed, the approach taken

here is applicable to a wide range of other partial differential equations.
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A number of loose ends remain in the presentation of the basic theory. In

particular, the Green's functions and rules for diagrams should be thoroughly

reviewed and derived on a rigorous basis. In addition, the symmetries of the

Lagranglan should be analyzed further, particularly in regard to local gauge

invariance.

To merit serious attention, any theory must give reasonably accurate

calculations of experimental results. Therefore, the present formalism should

be tested as soon as possible before extensive work is based upon it. Since

almost all calculations will involve Green's functions, diagrams, or probability

density functions and partition functions, these quantities should be

rigorously derived and checked for internal consistency. The nonlinear

expansion termstIn the pressure gradient term were not studied in terms of the

diagonalized field variables. The contribution of these terms to mode coupling

should be examined.

Once the foundations of the theory have been checked, calculations should be

made of those aspects of turbulence which are well understood. Turbulence

spectra should be predicted, the propagation of sound through a turbulent fluid

should be analyzed, and expressions for the lower-order velocity moments should

be derived. Finally, attempts should be made to predict the transport of mass,

momentum, and heat for a turbulent fluid in a simple geometry.

(108]
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APPENDIX A

EULER-LAGRANGE EQUATIONS FOR FIELDS

Consider the functional

L fdtd 3xA (A.1)
where

4-

A *A(*.*, V;p, V2~ A, A. VxA, VXA), - (A.2)

then

3 xa fdtd3  a* ad a as av- ad aq ad (A.3)

av2 _8d aA ad 8a a VxA) ad a(vxA) a8

Mow

dt ;f d xdt(j) . (A.4)

Similarly,

dtd x t dtd(A.5)
f 814ad, 86 - ad 8a ad1,,8

and

dd3xal t - a(* j(Vj I . ddc; 3x( a * (A6

J ~ ~ ~ t xtd V6 Jt dtV ~ ' A

i 812*) a(da42) fa- ad

a. \8(,*);

..
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Also,

3tx~-- a ufdt 8P ~ 3 81
8(4) x (4 dtd x V '- (A. 7)a~w aa a (vj) aa 't a (4) au

38
dtd x V x Xat \a(V;) aia(4) aa

Using Equations (A.3) to (A.7), the condition

8L/8a = 0 (A.8)

leads to the equation

V + V2 . + V. 0 (A.9)

a# at 3; 8V a(v2,) at 'a

Relations similar to (A.4) to (A.7) hold for the vector fields, A. For example,

d4d3x M A d3x a a. t43 21_a

fdtd - -f d fdtd3x a a)a (A.10)
3A a J A a

and

dtd xV dt -fAtd x Vx T--  aA
a(VxA) O a (VXA) fd a(VxA) 4.

Continuing in a parallel manner to that used to derive Equation (A.6) to (A.9),

the condition (A.8) gives

a ~ V a-0 + a xal
-- -- . - -- - 0 .(A.12)

aA at (8A) a(VxA) at a(vxA)

[112]
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APPENDIX B

OPERATOR FORMALISM

As noted earlier, the solution to any partial differential equation (POE) is

a field.8 1 We add that it is a field under scalar addition and multiplication

over the domain of the independent variables of the POE. In our case, this

domain is {r,t). In passing, we also note that the field variables for each POE

form an Abelian group under scalar additionB2 and that the Poisson bracket

relations for these fields and their conjugate fields define a Lie algebra.
8 3

Of more immediate interest is the fact that any function of a field variable

defines a vector. In particular, the elements of the fields themselves comprise

a vector through the relation

f() ** , (8.1)

where we now use the letters *, *, and X to denote general field variables.

Now for every vector field there exists a dual vector field. We may think of
.*

vectors defined by Equation (8.1) as column vectors and the dual vectors as row

vectors.8 2 Then the dual vectors are formed by taking the transpose of the

orginal vectors.

We may take the outer or tensor product of a vector and its dual vector to

form a tensor that can be represented by a matrix. Dirac invented a handy

notation to take advantage of the above properties of field variables.B 4 His

application was confined to the solution of the wave equation for the

probability amplitude in quantum mechanics, but we may use it quite generally.

We denote a column vector by the "ket" 1>, and its dual row vector by the "bra"

<41. Then the tensor product of a column vector times a row vector is denoted

by I><*1. Part of the utility of this matrix formalism is due to the

isomorphism that exists between the properties of linear operators operating on
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fields and the properties of matrix multiplication. This happy correspondence

is further strengthened by the fact that the isomorphism extends to the trans-

formation properties of these quantities. However, if the matrix formation is C

to be truly useful, we must define an inner product, which we denote by <#1*>,

that has the following properties:
B2

to linearity

<c* + > = c~ < *lx> + d<Olx> (B.2)

skew-symmetry

r* " <1, (8.3)

and positiveness

<*jI>>o, real, * t 0 . (8.4)

In Equations (B.2) to (8.4) we have denoted complex scalars by the letters c and

d. If the fields * and # are real, then the skew-symmetry property collapses to

simple symmetry. The properties defined by Equations (8.2) and (8.3) give the

inner product the property of bilinearity.

If we can find an operation that meets the requirements of Equations (B.2)

to (8.4) we will have vector fields that form a unitary space,B2 and will have a

complete formalism that can be used to calculate quantities of interest. Many

linear operations, such as conditional probability density functions, satisfy

Equations (8.2) and (8.4). However, it is more difficult to satisfy Equation

(B.3). The requirement of Equation (8.3) is met by the definition

<O(a)l#(a)> fda *k(a)*(a)f(a) , (B.5)

where a is the common domain of the fields * and * and f(a) is the steady-state
probability density function for the occurrence of given values of a. Equation

(B.5) defines a correlation function, which is a very useful quantity in

[114]
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probabilistic descriptions of many-body systems. The utility of the definition

(B.5) was first pointed out by Zwanzig 85-812 and MoriB1 3 -8 1 7 and has led to the

development of projection operator and memory function calculations. 81 8 8 2 0

Actually, the definition (B.5), aside from the weighting factor f(a) that

takes account of the possibility expressing the fields # and # over an arbitrary

transformed domain for which all values a may not be equally probable, is the
B2

same as a standard mathematical definition of the inner product.8 2

We see that we may construct a matrix formalism that is completely parallel

to the well known one of quantum mechanics. This formalism is quite general and

not at all peculiar to a quantum system. Indeed, almost all of the development

stemmed from the basic fact that the solution to any POE is a field. The only

aspect of our development that presented any serious restriction was the skew-

symmetry requirement for the inner product.

Since they are vectors, I*> and <OI satisfy the relations

IO+> + I,#> I #,+> + I#<> .(B.6)

<.1 + + <* + (8.7)

1,> + (I + IX>)- (1*> + I,,)+ Ix> . (8.8)

<1 + (<I + <xl)- (<*I + <+) <xI , (8.9)

c > + I>) - cIO> + c1> , (8.10)

c(<,l <,I) = c<,I ccl , (8.11)

and

;I,> - 1*'> 1<01 - <4*,I (8.12)

Furthermore, the 
dual of cIO> is 

c*<*i. We write this as

(cI,*>) + l c*<4, (8.13)..,
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Let us denote the linear tensor operators 14><(01, 1*>.iI, and Ix><xl

respectively by #, Y, and x. Since the transformation properties of these

operators are isomorphic to those of matrices, we also have the relations

c(d) = (cd)# , (B.14)

(c + d)# - c + d , (B.15)

c(O + Y) = ct + cY , (B.16)

#(Yx) = (OY)x , (B.17)

( + Y)Xx =  +x , (B.18)

*(T + X) = OT + OX (8.19)

(cO)Y = c(OY) (B.20)

and

#(cY) - c(OY) . (B.21)

Furthermore, there will exist an identity operator, I, such that

19=9 #91 . (8.22)

The combination of Equations (B.6) through (8.13) and (B.14) through (B.22)

leads to the usual linear relationships.84,521,522 The operation of a bilinear

operator on a vector will yield a new vector of the same type,

#*> = Ix>, <I# = <x • (B.23)

This is often taken as the definition of a bilinear operator.8 4 ,8 2 1 ,8 2 2

We also have

0(1*> + IX>) - 41*> + *IX> , (B.24)

(4 + <xl0 = 4*+ <X , (8.25)

*(clw>) = col> (8.26)

(<Wlc)o = <19c , (B.27)

(9 + t)Ix> = fix> + YIx> , (B.28)

<XI( + Y) = <X14 + <xif , (5.29)

[116]
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(eY) Ix> - *(Y~x>) (8.30)

and <xI(4*) s (<xI4)y . (8.31)

However, we do not necessarily have commutation of operators;

(B.32)

Note that all of the properties (B.6) through (B.32) are quite general, and

beginning with equations like Equation (B.1). can be derived for any field. The

critical properties (8.2) to (B.4) depend on the definition chosen for the inner

product.

We now define the length o*1 Of a vector J> or <4J by8
2

1 u<e >  . (B.33)

If all vectors have a finite length, then Equations (8.2) through (B.33) define

*. a Hilbert space. If in addition, our definition of the inner product is such

that the rules (8.2) to (B.4) apply, we must have:
8 2

Icel - Icll#l, (8.34)

1,>o, 0 , (8.35)

Ikolol 4 1*11*1 (B.36)

le + *1 4 l,0l + 1*1 (B.37)

I#-,l aG , (8.38)

I*- i# >0, 4 (8.39)

and
I*- *1 + I*- xI ) l*- x • (B.40)

Equations (8.34) through (B.40) define a Euclidian vector space.

From Equations (8.13) to (B.21) we see that we must also have

<0l(cl,>) - c<ol*, , (8.41)

<*1(1 + Ix>) - <*I*> + <*Ix> , (B.42)

(<,*I + 4')Ix> = <*Ix> + <*Ix> (8.43)
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These Equations (8.41) to (8.43), as well as many of the equations above are

given as postulates by Fujita,8 2 1 but we see that they follow directly from the

properties of fields and our definition (8.5).
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APPENDIX C

HYPERCOMPLEX DESCRIPTION AND COUPLED FIELDS

We now elucidate the incongruous situation which occurs whenever we have

first-order time or space derivatives in our equations. This occurs, for -

example, when we juxtapose the equations of motion for the * and j fields or

the A and A fields, and is most evident in the disquieting form of Equations

(2.38) and (2.39) in Part I:

T t* ' (C.1)

and

V?- r k . (C.2)

We may find some relief from the unfamiliar appearance of such equations by ,

noting that the adjoint fields, * , defined by

# A(C.3)A

where yA is a suitable hypercomplex number, behave differently than the more

familiar fields, such as 4*. The use of hypercomplex numbers is common in

particle physics, where they are used in a four-dimensional context to describe

degrees of freedom of the system, such as spin, that are not explicitly manifest

in the equations of motions. The physics underlying the use of hypercomplex

numbers in our equations is not yet-clear, but a hypercomplex description gives .0

us extra freedom to achieve a fully self-consistent system of equations. We

first give a brief review of hypercomplex numbers, and then illustrate how they

may be used to deal with anomalies in the equations of motion.

Hypercomplex numbers are an extension of complex numbers and are often

represented by matrices, as their multiplication table can be illustrated by

[120]
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multiplication of the appropriate matrices. C 1 In our context, they are under-

stood to operate in a four-space apart from the space-time space described

above. We are especially interested in four such numbers,

YO' Yl' Y2' Y3 a Yo' ' a 1A , (C.4)
V

which we will now associate with the time and space derivative

a ata , (C.5)

as follows:

at# ax -.€oat, Ykax . (C.6)

We have a wide degree of latitude in choosing matrices to describe the numbers

C2S

T ; the choice will rest on those aspects of the system we wish to highlight.C2

The Pauli-Dirac representation:

Y 0 T (C.7)

Y (C.8)

where the a. are the Pauli spin matrices,1

S= ,,(C.9)
1 1 2 i 3 1

is the most commonly used system in particle physics, and emphasizes parity

conservation. The Weyl representation:y a [ ! , C.00r 1'0*fl 1 I (C.10)

is also common to particle physics, especially when considering the conservation

of chirality.
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We will define a representation that will emphasize symmetry properties

under time reversal:

1 0 [ I (C.11)

We find

2.. [, 1[ 0J 1- (C.12)

2 2 IC.13)

and

707k = - 7k70 • (C.14)

We now postulate a pair of fields and X, coupled by the first-order

hypercomplex equations.C
2 ,C3

1

( 0at + CykaX) = O(?0at - Cyk'x)ykax(* - X) , (C.15)

and

1
(Ya- cy a,)x = LD(voat + CkaxvkaX(* X) (C16

Operating on the first of these equations by y0 at + ckax and on the second by

-Yoat + cykax

2 2 2 )* 1 2 2 2 ) ( 7(at c cax)# = (at- 2*fkyOaxat + c2a2)ykaxl( -x) (C.171)

and

(a c a )X + 2y 2 c2 a ya (C18)
ax 4lat 2 k 0ax t a)kax(..

b J1
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Subtracting Equation (C.18) from Equation (C.17), leads to

(a- c2 a ) ( - x) - - Dvky07kaxatax(, - x) 'A

a 0youxlt'x(,* - x) * (C.19) V

If we now make th. connection

* (* \(C.20)
x

we retrieve our equation of motion for * corresponding to L.: e

2a c a Dy ~a a ax# (C.21)(a x

A
From Equation (C.21) we find the corresponding Equation for #A ; we take the

hermetian conjugate of Equation (C.21)

(a 2- c ) a Da a a*. Yo • (C.22)
p-_ ,,

and multiply on the right by yA" If we choose yA such that

v 0O A - - A Y O ,( C .2 3 ) P '

we obtain

(a- c2a , - Dati (C.24)

Note that the contrasting forms of Equations (C.21) and (C.24) depend on the use

of hypercomplex numbers and the relation (C.23). A suitable choice for VA is

7A 1 1J
AA

(.2

(123]""'

A. A P P .



This choice yields the relations -

TO0-VA [ TO (C.25)

and

YANk - Ok IJA (C.26)
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APPENDIX D

THE SCALAR STRESS TENSOR

Since the Lagrangian density contains second-order derivatives of the

fields, it is necessary to extend the standard derivation of the stress-energy

tensors. Denoting general derivatives of the fields , and * by % and ,'the

variation in the Lagrangian density, a, is given by

aft + 111-6 + + adjoint terms. (0.1)
ae + a~)p .

a# V *V V VP aVP VP 4.

In the following discussion, specific mention of the adjoint terms will be

dropped, i.e., the existence of parallel adjoint terms will be implied. From '"

Appendix A, the minimum in the variation in satisfies an equation similar to

that of (A.12):
..%

o=a* a a ax, aL 8P (D.2)

where x V is one of the components of the four vector

X a (r,t) . (0.3)

Substitution of Equation (0.2) in Equation (D.1) gives

_L _U a* I ---a*(0.4)

If the transformations of the fields are such that

#(x) - '(x) u *(x) + a(x) , (0.5)

and

*(x) '(x) ( lx) + 84' (x) , (0.6)

then the total variation in the fields, including transformation to new

coordinates will be gi/en by

aTO(X) # *'(x) - *(x), (0.7)
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and

8T*p(x) x - *lx). (0.8)

Consequently,

6T,(X) * (x') + x . (0.9)

and

a#
aT#p(x) = 6*p(x') + a ax , .10)

Substituting Equations (0.9) and (D.10) into Equation (0.4) yields

T P Oaxp V cra . 'J

The coefficient of 6x n Equation (0.11) is the tensor T given in Equation

(3.10) of Part I. For pure translations BT of * and #P equals zero and

Equations (3.1) to (3.4) give Equations (3.16) and (3.17).

(126]
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APPENDIX E

In the special case where the approximation of constant vorticity,

Vx~ag 0 (E.1)

may be made, the interaction Hamiltonian,.41l can be written as

J/ X + .9 + J/(E.2)
I 1 2 3,

where

49 VA x),~o*+*y4 (E.3)
Bc

'V

.2 2 (VxAy 0  y y0VxA) -(VW *V#i) ,(E.4)

8C

andJ/3 is the same asA/ in Section*2.

E.1 Revised Canonical Transforms

We first note that

- 2 t
i" V4 iZZ- -C~p+ q)(llqnp - (pq)

pq q

+ (p, - q)(nlct + 1) p ,q) (E.5)

and

*p qw )qri

+tc qkT)(?C j* C )] .(E.6)
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Therefore,

* w ~kx~aa2 kW a

8C ,ik q qk q4

[ (q + k )w~qk + qw.~q] s..q+k q

* qmq -(q +klw ql
q q~k

+ [(q +k)a, Inr1q7 Ct (E.7)
'On~k ~qq+k

Proceeding in the same vein, we find

3,

Sc qk q ''ak"

1*7 t Ct + ~ n4

Tq~kq + q+k - q ! - E8
q +k q q+k

It is convenient to add Equations (E.7) and (E.8) to obtain a quantity denoted

by H 4 :

4 1 2

q ak

[128]
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-(nt 17+B .1.+C C - E9
q+k q q+k- q q q_ q q+k

where the vector functions of q and k, A, B, C, and D, are given by

Alq, k) - (2q + klwak + (q + kl~qq+k + qqql (E..1O)

B(q, k) - (2q + kl + (q + k (E.11)

Clq, k) ( 2q + k)" ak + qwnlq (q + klw Cq+k ( E.12) .

and"

D(q, k) (2q + k)wk - qw - (q + klwq (E.13)

The required "canonical" transforms needed to diagonalize H4 are
q a qqak Cq q

ct - [(Mq+ W kq + wn q)nt + (Q - Oakq - w qq)C ]/M/Z (E.15)

d q -[(Qq- ak q -n Oq)nq +(qq+ wak q w C,(q q)( _]/V'Qq ,(E.16) .

and

dt [(Q- wk q  w ncq)n t + (Q+ wakq + w qq)C: ]/V_2q (E.17),-

D q, )= q * )9ak q '4 (q )Wqk (.i4 q

The resulting contribution to H wi lead to a Hamltonian of the form

H- C. kx(k at_*)  (+ q d+q/ (E.18)

YE q aak -~ q~ q akk q-

k 4Vr-pII

andk

U JE at& -ify (a -at)y (n n f )/Wd] (E.19)
k k k k 0 k q cqk dqk q

[1291
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E.2 Order Parameter

An alternative means of gaining insight into the behavior of the flow system

is to examine the behavior of variables analogous to the model of the lasing

transition studied by HakenEl-E6 and others. E7 E 14 In this formulation, a

variable related to mk and m at low values of k will behave much like an order
E15-El8

parameter in the Landau-Ginzberg model of critical behavior. We begin

with a truncated Hamiltonian, omitting HNL and H3 for the time being. We find

the following equations of motion for the normal modes of H

a = -iW a_ + fk(k;)j[At 1q + Bq1kC't + Cq _ + ' _] (E.20)
ak k q q+kq q+kqq q+k

k ak +~~(~qk~ +Brj Ct+ Cn C +DCIL.... (E.21)
q qq q+k

n q 1W 1rqlq + Ifk kx(a k lt)(A1?q-k +4 SC__] (E.22)
q+k

7. l i _, - (a t - t)[A7n+ + cc] (E.23)
q wqq k k k q+k q+k

C -iw4qc + I fkkx(ak - aT)(Bt, + DC] , (E.24)

q -q q k q

and

i _qC + I fkkx(ak - at) [C +k + DOCk] .(E.25)
q kk

Equations (E.22) to (E.25) are now used to find the equations of motion for

N and N as ell as for two new variables, A and aq, defined by
rpq NCqi sw q q

a ' q C. (E.26)
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4

and

at = tCt .(E.27)
q q~ -

Note that

[nqaq,] - cqaq , , (E.28)

'al.,t,] a (E29)'

q q q q-q

and

[aq,a,] , . (E.30) ;
q q q qq

The equation of motion for N is obtained by multiplying Equation (E.22) by rit
* q * q

and Equation (E.23) by "q , and adding. We adopt the convention that the

appearance of terms with k in thetr subscripts implies a sum of terms with both

±ikl. We find

n W - (C1aq At)- 8"TC L . (E.31)
"I kkk k [nq +_k q q~k

Similarly, letting

Fk M fk (ak - a), (E.32)

n Fk*(CC 11 ek - - I (E.33)
Cq k q qqk

-icqaq + 4 -EA~ (tC n On DiC] (E.34)k+k q q--

and

g*t iicqOr - [n Ct F.(A1? + TI + Onttt I (E.35)
q q k k q+k q qq+k q q+k q. 1q
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we now take the liiit k-.o and find with

nq n niq + n.q (E.36)

the following approximate equations:

fl 2.1 (Ce - But), (E. 37)
q ~-o k q q

q -iq i.F (A4O)Ur +*Bn] (E.38)
aff q +qI k q]

and

*t icqat -11 F .((A+D)at + Cn ](E .39)
q. q k-0 q q

Equations (E.37) to (E.39) can be used as the starting point for two

different treatments of critical behavior. The first is a computer study of a

transition to chaos similar to that of the Lorentz model of Benard convection.E1
9 E2 0

The second parallels a model of the lasing transition studied extensively by

Haken.El-E6

[1321
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APPENDIX F

TRANSFORMATION OF THE INTERACTION HAMILTONIAN

In this appendix, we show how Hamiltonians such as HA given in Equation

(3.1) may be transformed to the form given in Equation (3.6). The treatment

follows closely that given by Kittel for the electron-phonon interaction. 1

Consider the truncated Hamiltonian HT. given by a diagonal basis Hamiltonian

H and a perturbation part H':

if'
H zH -- H' , (F.1)
T D (ai

q

where for example

Ho =0 'akaak (F.2)

and

H' - kx( t - a )ct.cq (F.3)

The key step in transforming Equation (F.3) is to postulate the existence of a

function S such that

S [S,HD] u--H' . (F.4)
q

Equation (F.4) can be shown to be satisfied using the interaction picture.F1

Although we are discussing a fully classical system, the concept of Schroedinger,

F2
Heisenberg, and interaction picture can still be appliedF , as implied by the

discussion in Appendix B.

Integrating Equation (F4) gives

S(o) °dt H-(t) (F.5)
'"q -D
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m0

Substituting Equation (F.5). into Equation (F.4) and then substituting the

resulting form of Equation (F.4) into Equation (F.1) gives

HT m Ho - iL [H' (o),S(o)] (F.6)
2wq

or

,2

H No + ±L!fIdt[N'(t),H'(o)] (F.7)
T 2w -O

2q

From Equation 3.1

f' a Yo . (F.8)

Therefore, the perturbative term in Equation (3.1) in the fields cq can be put

in the form (y2 * -1)
0

%Ha!k 1_ k tlx~kt (tt~c)t)k'x(ak, -)c W(F )
2w 2 -0 k s~kt)]c~ t kI ) J.(.

This may be written as

kk' !fk dt (cqk-wcq)t t t

(f)2 dte cqck cq cqt

1.• ak +.m+ . , 0ia' (F.10)o
The Fourier transformation yields, upon contracting the Poisson brackets,

t t(C ~ ' - 1 ' C k c t ' k '.

%_k :k k - cq - q . (F.11)
2 q / w cq +wak cq+k "cq -k
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Performing the addition and making a similar transformation for the d fields

gives Equation (3.6).

One difficulty occurs in that there are several nonlinear contributions to H

of the form described above. Transformations using functions S of the type

described in Equations (F.4) and (F.5) must be applied to the various nonlinear

contributions simultaneously. This can be achieved through the use of projec-

tion operators, again using the concepts described in Appendix B.

REFERENCE
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APPENDIX G

In this appendix, we will display the steps required to generate the

specific term shown in Equation (4.21) of Part 1II. We begin with the set of

Equations (4.7) to (4.12). For the particular term of interest, we replace the

qf term in Equation (4.7) with expressions (4.9) and (4.10). We find that

61lmklAm(q,k)n
t (q+k)n(q) -

9 ila klA mlq~klG11lq+k)Gntl(qlF"lq~klFrlq)

q

I 1 k A (qk)Gn(q+k)G1t(q)Fn(q+k)f(k")r k
q k. ON I1. rst s

[t(k") - at(k")]Ar (q,k")n(q+k") + r (q,k")Ct(q+k")]

+ I 1.4ilm kIA m(q,k)G]?(q)G"(q+k)F" (q)f(kl)e npq kp

q k'

Ea (k') - a (k')][ A (q+kk')i(q~k-k') + B (q+kk')8n  (q+k+k')q q n n

+ 0( f2 (k) ). (G.1)

In this expression we will examine the second term on the right side, looking at

the term proportional to Ar . Using Equation (4.9) once again, but this time

truncating at the linear term, we find

I f(k")G(q+k) "t(q)G(q+k")F"(q+k)F"(q+k")
q k"

a k Ak(q,) tk" at(k")A(q,k")

+ the same term with at(k") - ai(k"). (G.2)
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We will now take advantage of this equation, and employ the relation

0 (q+k)F l(q+k")> - *(q+k-q-k")

4(k-k") (6.3)

leaving us with, after the sum over k" is carried out,

< f(k)klCrstks[ GII(qtk)G"(q)O"(q~k)Aa(q.k)A (qk) at(k), . (6.4)

replacing at with a lowest order contribution, we find that Equation (4.7)

bangm-a

a •I(k) > [ (k) +

w~j (ewlklerstksl a (q+k)G (q)84(q+k)
q

f(k)Am(qk)f(k)A (qk) 08 (k) JF (k) . (G.5)

Thus, we write to lowest order,

a(k) > G a~(k) F*(k) +
(G.6)

where djo(k) is now given by Equation (23). Also, it is seen in Equation (4.5)

that the sum over internal wave-vectors contributes a term of the form

I mr(k) - Am(q,k)Ar(q,kGr4(q,kG17tq)G"(q+k) . (G.7)
q

(1361
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